An epigenome-wide association study of television viewing time in the Melbourne Collaborative Cohort Study

Eline van Roekel
ISPAH SBC Satellite Workshop
Cambridge, 13 October 2018

Sedentary behaviour and health

TV viewing and DNA methylation
Television viewing time

DNA methylation

11/28/2018
Objective

To study associations of television viewing time with DNA methylation within the Melbourne Collaborative Cohort Study (MCCS)

Study design

- Melbourne Collaborative Cohort Study:
 - 1990-1994: 41,513 participants recruited
 - 2003-2007: 28,240 with follow-up 2 measurements

- Data used of seven nested case-control studies on cancer:
 - Follow-up 2: N = 1,249 (mostly controls)
Television viewing time assessment

- International Physical Activity Questionnaire (IPAQ)
- Television viewing time on week and weekend days (hours/day)
- 149 participants: total time spent sitting on week and weekend days (hours/day) → combined quintiles of television viewing or sitting time
- MET-hours/week of total physical activity: leisure-time physical activity + walking

DNA methylation measurement

- DNA extracted from peripheral blood samples:
 - Dried blood spots
 - Peripheral blood mononuclear cells
 - Buffy coats
- Illumina Infinium HumanMethylation450K BeadChip (HM450K) array
- Measures methylation at >450,000 CpG sites
- 96 samples per plate, 12 samples per chip
- Genetic Epidemiology Laboratory, The University of Melbourne
Processing of methylation data

- Background correction and normalization
- Exclusion of samples:
 - Sex different than predicted
 - Bad measurement (detection P-value)
 - >5% of CpG sites with missing values
- Exclusion of CpG sites with >20% samples missing
- Calculation of β-values (proportion methylation)
- Transformed into M-values for analysis:
 \[M = \log_2 \frac{\beta}{1 - \beta} \]

Statistics: epigenome-wide association study

- Linear-mixed regression in R
- Testing associations with M-values at each CpG site for:
 - Television viewing time (N = 1,078)
 - Quintiles of TV viewing and sitting time (N = 1,227)
- Adjustment for potential confounders including age, sex, country of birth, socio-economic status, smoking, alcohol, study and estimated white blood cell composition (fixed effects)
Statistics: epigenome-wide association study

- Adjustment for MET-hours/week of total physical activity, including both dichotomous and continuous variable (fixed effect)
- Adjustment for relevant technical factors: chip and plate (random effects)
- P-value thresholds:
 - Significant: P<10$^{-7}$
 - Weak evidence: P<10$^{-5}$
- Sensitivity analysis: additional adjustment for BMI

Adjustment for BMI?

TV viewing time → DNA methylation

Body Mass Index

Cancer Council
Statistics: pathway analysis

- *gometh* function of the R package *missMethyl*
- Map CpG sites to genes
- Evaluate overrepresentation of KEGG pathways
- CpG sites with associations $P<10^{-4}$

Results: Descriptives demographics

<table>
<thead>
<tr>
<th></th>
<th>Follow-up 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(N = 1,249)</td>
</tr>
<tr>
<td>Age (years), mean (SD)</td>
<td>69 (8)</td>
</tr>
<tr>
<td>Males, n (%)</td>
<td>868 (68%)</td>
</tr>
<tr>
<td>Country of birth, n (%)</td>
<td></td>
</tr>
<tr>
<td>Australia/New Zealand/Other</td>
<td>957 (77%)</td>
</tr>
<tr>
<td>Greece</td>
<td>51 (4%)</td>
</tr>
<tr>
<td>Italy</td>
<td>103 (8%)</td>
</tr>
<tr>
<td>United Kingdom/Malta</td>
<td>138 (11%)</td>
</tr>
</tbody>
</table>
Results: Descriptives lifestyle

<table>
<thead>
<tr>
<th></th>
<th>Follow-up 2 (N = 1,249)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TV viewing time (hours/day), median (IQR)</td>
<td>3 (2-4)</td>
</tr>
<tr>
<td>Total MET-hours/week, median (IQR)</td>
<td>17 (7-35)</td>
</tr>
<tr>
<td>Smoking status, n (%)</td>
<td></td>
</tr>
<tr>
<td>Never</td>
<td>605 (48%)</td>
</tr>
<tr>
<td>Former</td>
<td>567 (45%)</td>
</tr>
<tr>
<td>Current</td>
<td>77 (6%)</td>
</tr>
<tr>
<td>Alcohol intake (g/day), median (IQR)</td>
<td>2 (0-3)</td>
</tr>
<tr>
<td>Body mass index (kg/m²), mean (SD)</td>
<td>27 (4)</td>
</tr>
</tbody>
</table>

Results: Television viewing time (N = 1,078)

UCHL5 gene: TGF-β signalling (inflammation)

ZMAT3 gene: TP-53 dependent growth regulatory pathway

STIM1 gene: involved in cancer development

Significant

Weak
Results: Quintiles of TV viewing and sitting time (N = 1,227)

- Significant
- Weak

DLX1 gene: involved cytokine signalling pathways (e.g. TGF-β)

PFKL gene: Liver glycolysis

Results: additional adjustment for BMI

Television viewing time at FUP

Television viewing and sitting time at FUP
Results: Pathway analysis

• 66 and 60 CpG sites with $P < 10^{-4}$ for TV viewing time and quintiles of TV viewing and sitting time (24 in common)

• Over-representation of KEGG pathways:
 • MicroRNAs in cancer: CDK6, NOTCH4, TP63, HDAC4
 • RNA degradation: LSM4, PFKL
 • p53 signalling pathway: CDK6, ZMAT3

Discussion: Summary results

• Weak evidence of cross-sectional associations:
 • Television viewing time with 9 CpG sites
 • Quintiles of TV viewing and sitting time with 5 CpG sites

• Mostly positive associations
• Non-overlapping and independent from physical activity

• Results indicate that tumour suppressor gene networks and microRNA-related mechanisms may be involved
Discussion: Strengths and Limitations

- **Strengths:**
 - First EWAS to date
 - Large study sample, but maybe not enough?
 - Pathway analysis

- **Limitations:**
 - Self-reported data on TV viewing time and sitting
 - Cross-sectional analysis

Conclusion

TV viewing time may be associated with DNA methylation

Recommendations for future research:

- Larger sample sizes
- Accelerometer data
- Mechanistic studies: influence on gene expression and health
Acknowledgements

MCCS participants

Collaborators in Melbourne, Australia
- Pierre-Antoine Dugué
- Chol-Hee Jung
- Eric Joo
- Enes Makalic
- Ming Wong
- Dallas English
- Melissa Southey
- Graham Giles
- Brigid Lynch
- Roger Milne

Genetic Epidemiology Laboratory & Melbourne Bioinformatics, The University of Melbourne

Cancer Epidemiology and Intelligence Division, Cancer Council Victoria

Funding: Endeavour Research Fellowship, Australian Government (6059-2017);
MCCS and methylation studies from multiple NHMRC grants.

Thank you!