

BRIGHAM AND WOMEN'S HOSPITAL

The Challenges of Meta-Analysing Metabolomics Data; Experiences from the Consortium Of METabolomics Studies (COMETS)

Rachel Kelly PhD Channing Division of Network Medicine BWH, HMS

> Thursday 23rd April 2020 CEDAR MRC Epidemiology Seminar

The University of Nottingham

The Institute of ICR The Institute of Cancer Research

Imperial College London

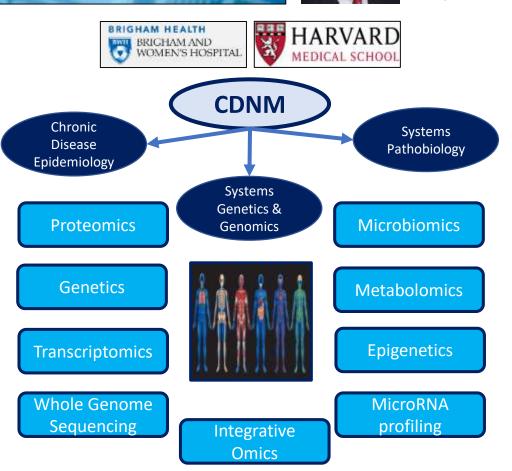
BRIGHAM AND WOMEN'S HOSPITAL

CHANNING DIVISION OF NETWORK MEDICINE

Edwin Silverman *Division Chief*

Our mission is to

- use an integrated, networkbased, systems biology-driven approach to define the etiology of complex diseases;
- (ii) reclassify complex diseases based on systems pathobiological mechanisms;
- (iii) to develop new treatments and preventive strategies based on these new disease classifications using systems pharmacology approaches"



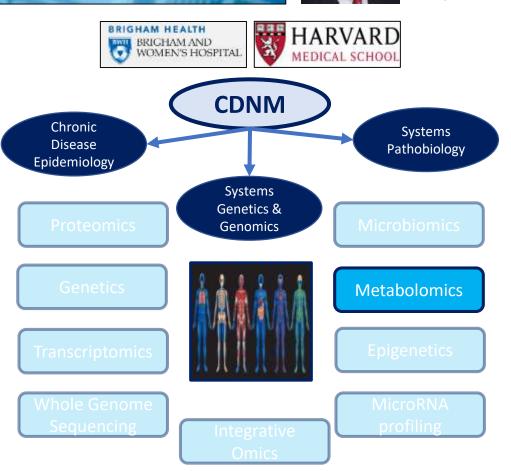
https://www.brighamandwomens.org/research/departments/ channing-division-of-network-medicine

CHANNING DIVISION OF NETWORK MEDICINE

Edwin Silverman Division Chief

Our mission is to

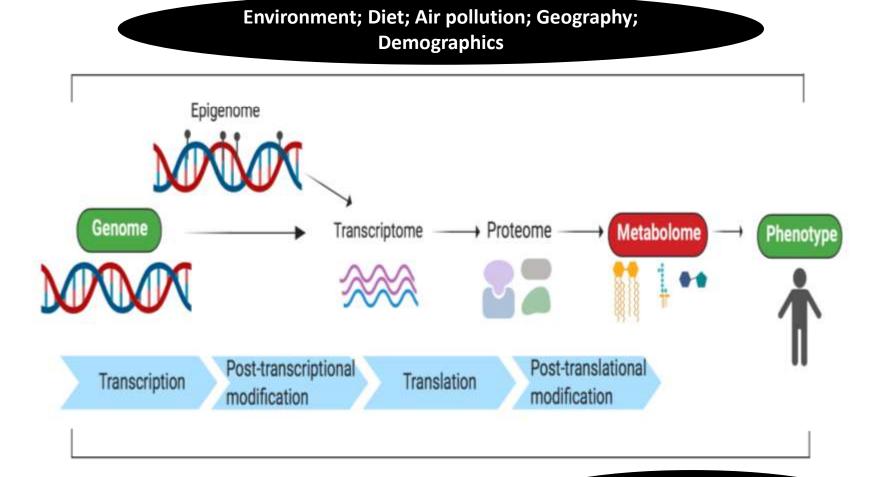
- use an integrated, networkbased, systems biology-driven approach to define the etiology of complex diseases;
- (ii) reclassify complex diseases based on systems pathobiological mechanisms;
- (iii) to develop new treatments and preventive strategies based on these new disease classifications using systems pharmacology approaches"



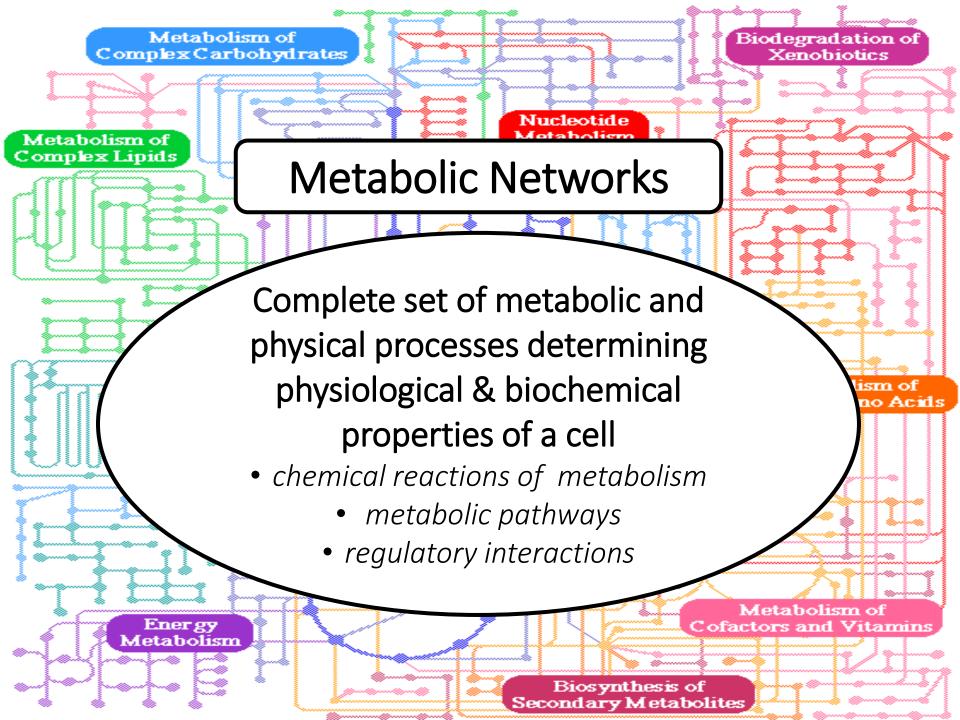
https://www.brighamandwomens.org/research/departments/ channing-division-of-network-medicine

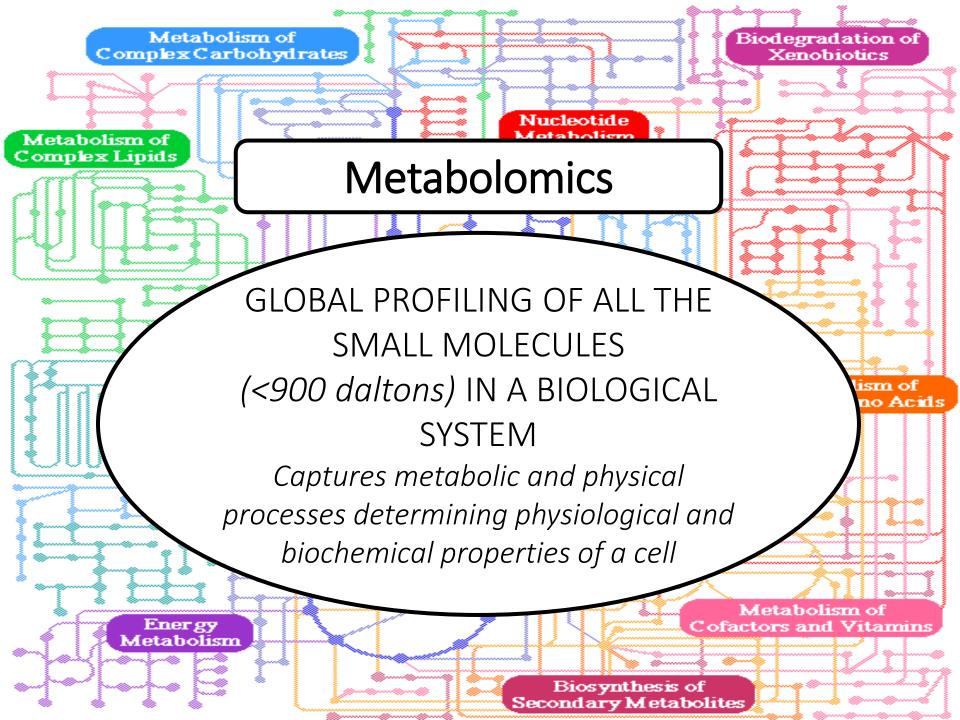
Metabolomics

The Central Biological Dogma

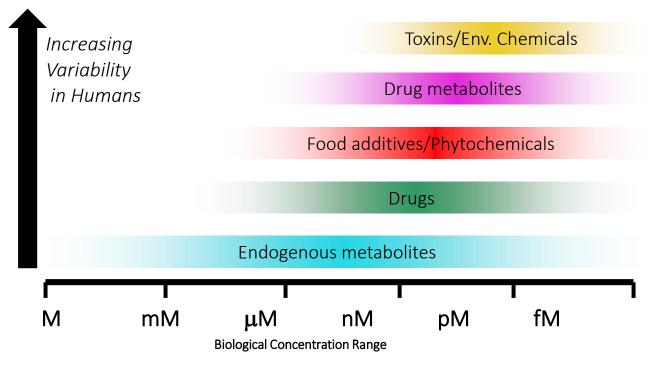


Microbiome

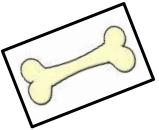


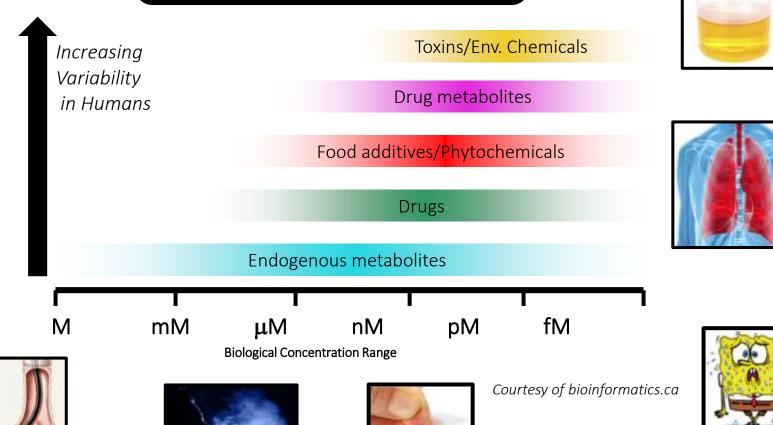


The Human Metabolomes



Courtesy of bioinformatics.ca





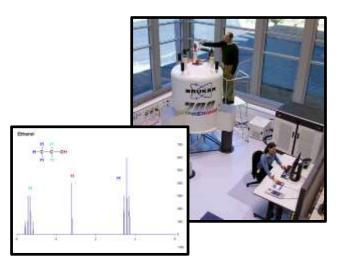
Metabolomic Profiling Platforms

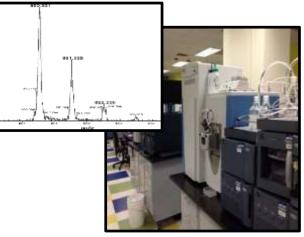
Nuclear Magnetic Resonance

- Most commonly H^1 or C^{13}
- Spectra based on the chemical shift induced by strong magnetic field
- Quantitative
- Highly reproducible
- Provides structural information

Mass spectrometry

- Ionization followed by assessment of mass-to-charge ratio
- More Sensitive
- Can measure more metabolites





Metabolomic Profiling Data: *Targeted* versus *Untargeted*

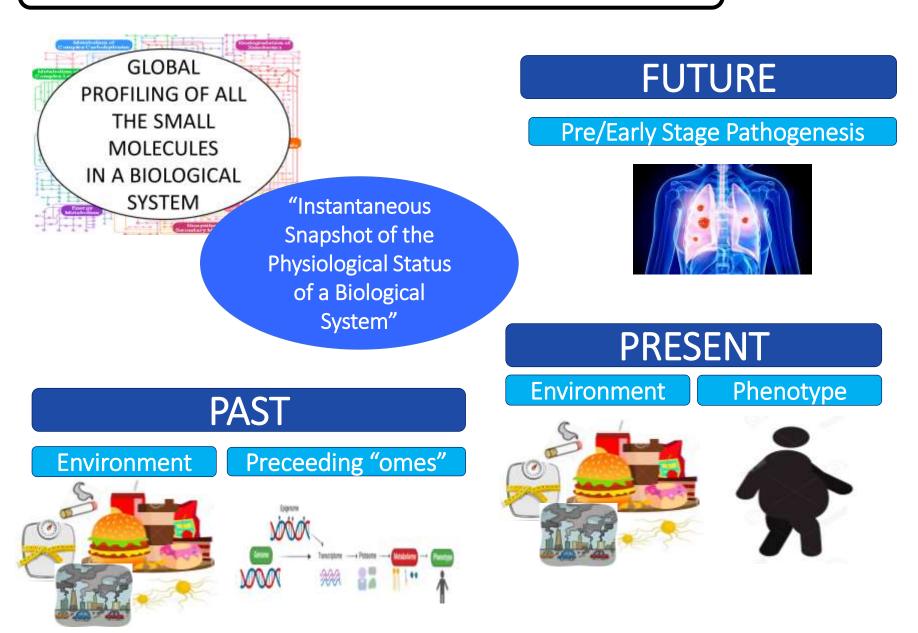
Untargeted

- Comprehensive 'Global" analysis of all measurable analytes in a biological sample
- Includes metabolites of unknown identity
- *Relative* abundance
- Measurement of defined groups of chemically characterized and biochemically annotated metabolites

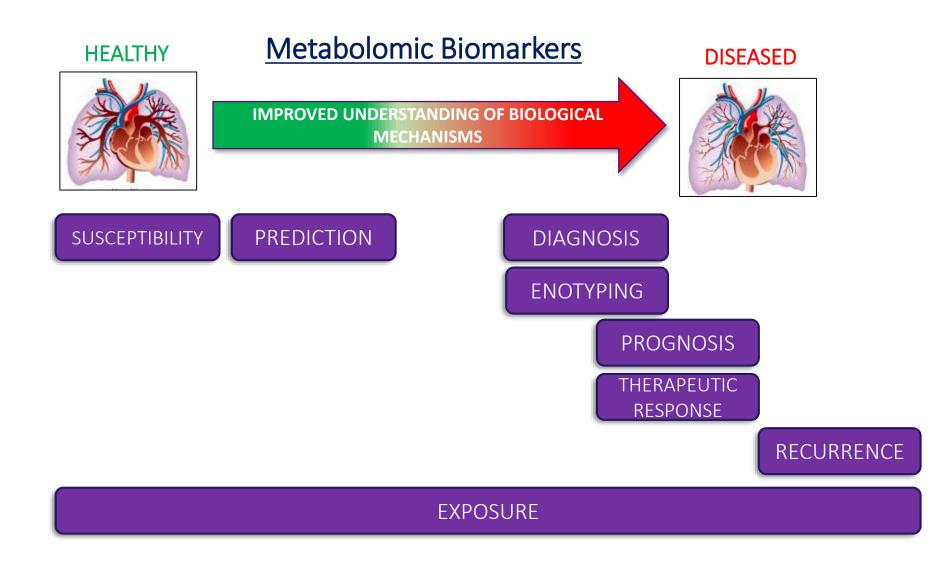
Targeted

- Fewer Metabolites
- Absolute quantification

What can the Metabolome tell us?

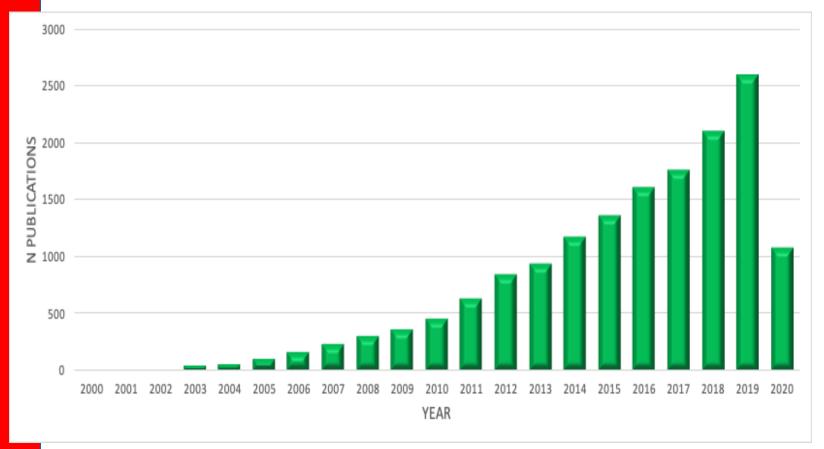


What can the Metabolome do for us?



Metabolomics is a Rapidly Growing Field

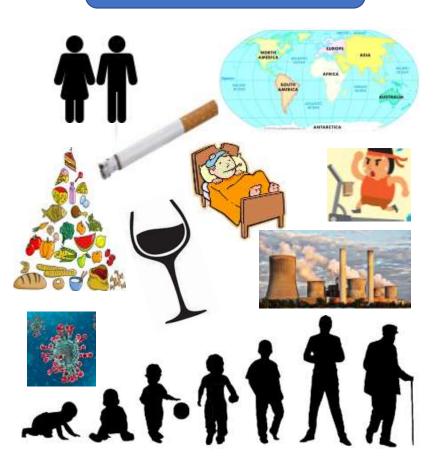
Number of Metabolomics Related Publications Per Year Since 2000



PUBMED SEARCH TERMS: (metabolom*[title] OR (Metabolite profil*[title]) OR (metabolite signature[title])) SEARCH DATE: 22/4/2020

Metabolomics Can be Noisy

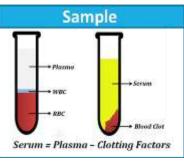
Biological Heterogeneity



Technical Heterogeneity

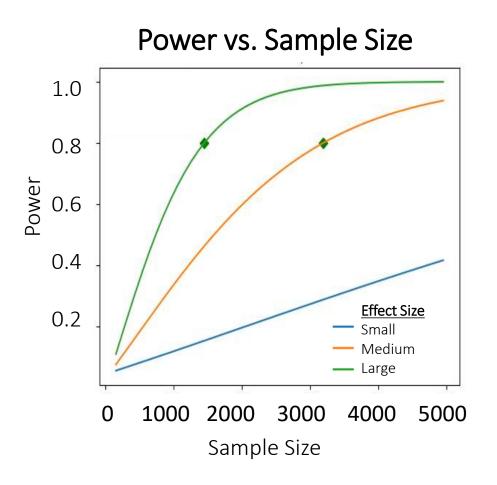
Sample Collection, Storage and Processing

Time of Day



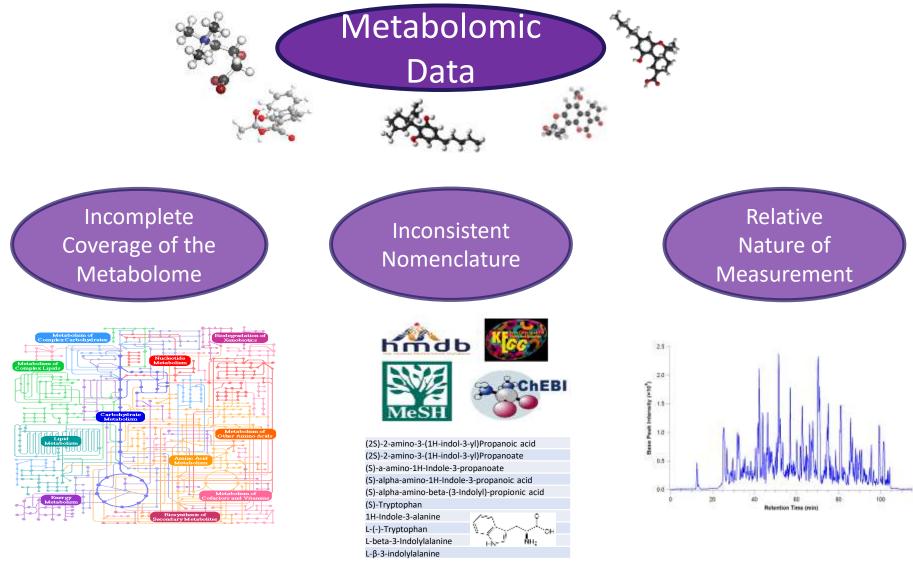
Season of Blood Draw

Obtaining the Strongest Metabolomic Findings



- Many existing metabolomic cohorts have limited sample sizes
- Meta-analyses provide:
 - More power to detect an effect
 - More precise and accurate effect estimates
 - More generalizable findings

Meta-Analyzing Metabolomic data Can be Complex



Plus 71 other synonyms...

The <u>COnsortium of METabolomic Studies</u> (COMETS)

COnsortium of METabolomics Studies

- Extramural-intramural partnership promoting collaboration among prospective <u>metabolomic epidemiology</u> studies
- Mission and Objectives
- Provide framework to foster international collaborations among studies sharing common objectives;
- Provide forum for the discussion, development & pursuit of new research
- Advance knowledge of the metabolome
- Membership Eligibility
- Prospective cohort, 100+ participants with blood metabolomics
- Phenotype follow-up
- MS or NMR

Krista Zanetti: COMETS Program Officer

Jessica Lasky-Su COMETS Chair

https://epi.grants.cancer.gov/comets/

http://www.comets-analytics.org

Velcome!	COMETS
IOMETS analytics is the self-service analytic later for the Consortium of METAbolism. CGI IN using your facebook or google account by licking on the logo or use your reen account after reating your own account under SIGN UP.	2006 at 2006 is
he platform is maintained by the COMETS termonization group with web support from NCI 2017, Por questions about COMETS analytics, tease email corrects.matylics@gmsl.com.	Lagree with processed and assessed
or more information about the consoritum, see the OMETS vectories.	Doit information poor presented?

Steven C. Moore

Marinella Temprosa

"a freely-accessible cloud-based, self-serviced analytic platform developed for consortiumbased metabolomics analyses"

Built-in Metabolite Harmonization: continually updating master list of metabolites with multiple levels of information

> Yu et al. **AJE**, (2019) 188; 6 Methods paper in Development (Temprosa et al.)

Ewy Mathé

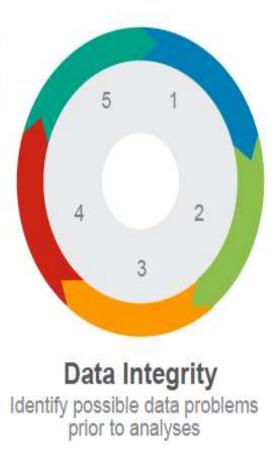
Analysis Pipeline

Meta-Analyses

Centralized analyses of aggregated cohort data

Cohort-Specific Analyses

Conduct patient level analyses for data exploration, and approved, manuscript proposals



Metabolite Harmonization

Create mapping of metabolites across cohorts and platforms

Data Preparation

Facilitate creation of common input file

Courtesy of Ella Temprosa

Metabolite Harmonization: All available metabolite information

COMETS Analytics maintains a dynamic continually updating master list of metabolites with multiple levels of information on every metabolite submitted for analysis, Including:

Veta-Analyses

Cohort

Data Integrit

larmonizatio

Preparatio

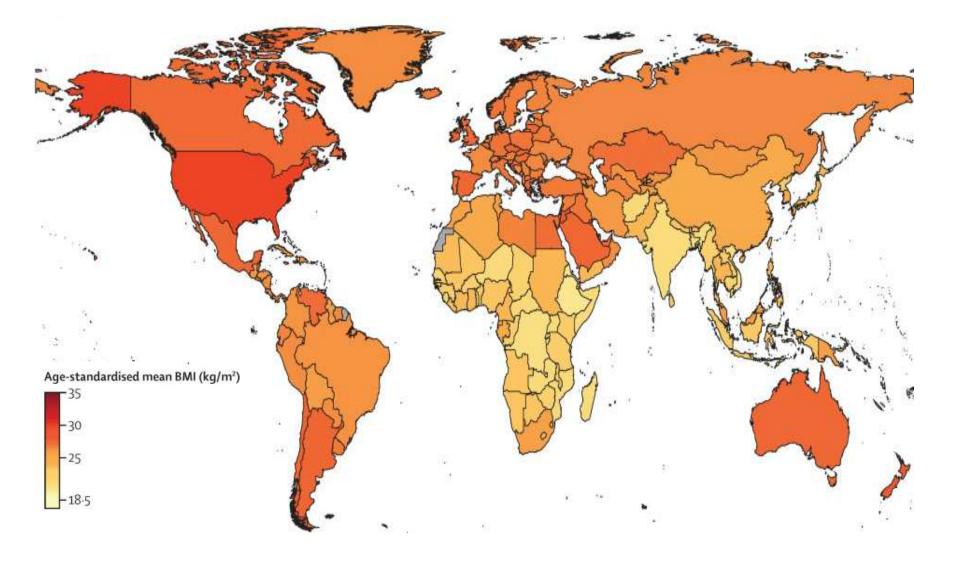
- Chemical Id (HMDB, KEGG, CHEBI, etc.)
- Platform assigned super pathways
- *m/z and retention time*
- Metabolite classification via metabolomics work bench and metabolon

Automatic and manual curation

	\bigcirc	\bigcirc	\bigcirc	C D		E F		S S		\bigcirc	\bigcirc	
1	A	В	C					Н	Ι	J	K L	
1	metabid	metabolite _name	SUPER_ PATHWAY	SUB_PATHWAY	COMP _ID	PLATFORM	PUBCHEM	HMDB_ID		chEBI ID	m/z	rt
2	ACETOACETATE	acetoacetate	Lipid	Ketone Bodies	33963	GC/MS	96	HMDB00060	NA	NA	NA	NA
3	ACETYLCARNITINE	acetylcarnitine	Lipid	Fatty Acid Metabolism(Acyl Carnitine)	32198	LC/MS Pos	1	HMDB00201	NA	NA	NA	NA
4	ACISOGA	acisoga	Amino Acid	Polyamine Metabolism	43258	LC/MS Pos	129397	NA	NA	NA	NA	NA
5	ADENINE	adenine	Nucleotide	Purine Metabolism, Adenine containing	554	LC/MS Pos	190	HMDB00034	NA	NA	NA	NA

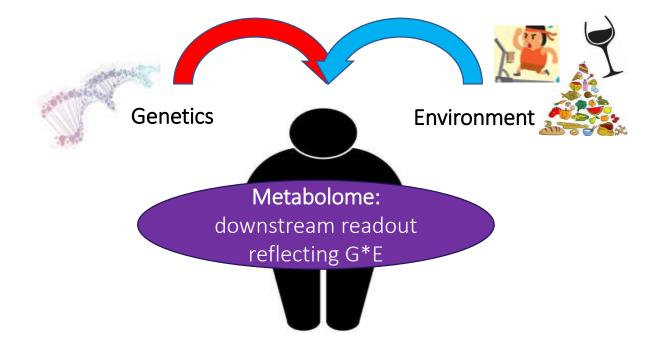
The Metabolome of BMI: A COMETS Meta-analysis

Age Standardized Mean BMI in Men by Country in 2014



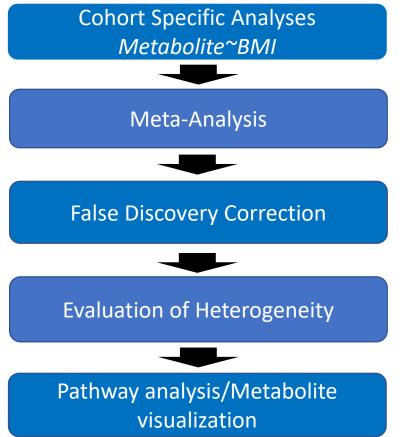
NCD Risk Factor Collaboration, The Lancet (2016)

BMI is perfectly suited to Metabolomic Exploration



COMETS Proposal: The BMI of Obesity

- <u>Aim 1</u>: To evaluate relationships between blood metabolite concentrations and BMI across multiple cohorts utilizing a metaanalysis approach within the **COMETS** consortium
- Aim 2: To evaluate heterogeneity of associations by participant characteristics and by study characteristics



Investigated Models

Review

= =

Ξ

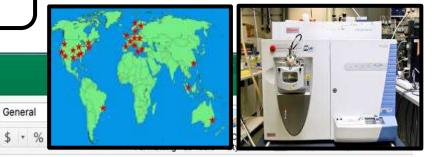
View

20- +

♦Ξ

Data

=



$f_x \lor f_x$ MODEL

Insert

D . O . O -

BIU *

Page Layout

Calibri (Body) + 11 + A+ A+

Formulas

• 🚸 • A •

.

Home

Paste

A1

Α	В	С	D	E	F
MODEL	OUTCOMES	EXPOSURE	ADJUSTMENT	STRATIFICATION	WHERE
RMI 1 0 Pacie adjuctment	All motobolitos	hmi	age female race, are nected, case		hmi>-1
BMI.1.1 Multivariable adjusted	All metabolites	bmi	age female race_grp educ_grp smk_grp alc_grp fasted nested_case		bmi>=1
+ DIVIT.1.2 INIGITIVATIADIE ATTO GIADETES	Ан тегаропсез	vini	age remain race_Rip endc_Rip sink_Rip alc_Rip rasted prev_diabetes nested_case		NIII/-T
5 BMI.2.0 Gender stratified	All metabolites	bmi	age race_grp educ_grp smk_grp alc_grp fasted nested_case	female	bmi>=1
6 BMI.2.1 Gender stratified diabetes	All metabolites	bmi	age race_grp educ_grp smk_grp alc_grp fasted prev_diabetes nested_case	female	bmi>=1
8MI.3.0 Race stratified	0 Race stratified All metabolites bmi age female educ_grp smk_grp alc_grp fasted nested_case		race_grp	bmi>=1	
8 BMI.3.1 Race stratified diabetes All metabolites bmi age female educ_grp smk_grp alc_gr		age female educ_grp smk_grp alc_grp fasted prev_diabetes nested_case	race_grp	bmi>=1	
BMI.4.0 Fasted stratified	All metabolites	bmi	age female race_grp educ_grp smk_grp alc_grp nested_case	fasted	bmi>=1
0 BMI.4.1 Fasted stratified diabetes	All metabolites	bmi	age female race_grp educ_grp smk_grp alc_grp prev_diabetes nested_case	fasted	bmi>=1
1 BMI.5.0 Diabetes stratified	5.0 Diabetes stratified All metabolites bmi age female race_grp educ_grp smk_grp alc_grp fasted nested_case		prev_diabetes	bmi>=1	
2 BMI.6.0 nested_case stratified	6.0 nested_case stratified All metabolites bmi age female race_grp educ_grp smk_grp alc_grp fasted		nested_case	bmi>=1	
3 BMI.7.0 Age stratified	.7.0 Age stratified All metabolites bmi female race_grp educ_grp smk_grp alc_grp fasted nested_case		age_grp	bmi>=1	
4 BMI.7.1 Age stratified diabetes	.7.1 Age stratified diabetes All metabolites bmi female race_grp educ_grp smk_grp alc_grp fasted prev_diabetes nested_case		age_grp	bmi>=1	
5 BMI.7.2 Age stratified age-adj	BMI.7.2 Age stratified age-adj All metabolites bmi age female race_grp educ_grp smk_grp alc_grp fasted nested_case		age_grp	bmi>=1	
6 BMI.7.3 Age stratfied age-adj diabetes	All metabolites	bmi	age female race_grp educ_grp smk_grp alc_grp fasted prev_diabetes nested_case	age_grp	bmi>=1
7					

CometsInput

Wrap Text

📑 Merge & Center 🔹

Pre-specified Models in the User Input File

Ready

Metabolites

SubjectMetabolites

SubjectData

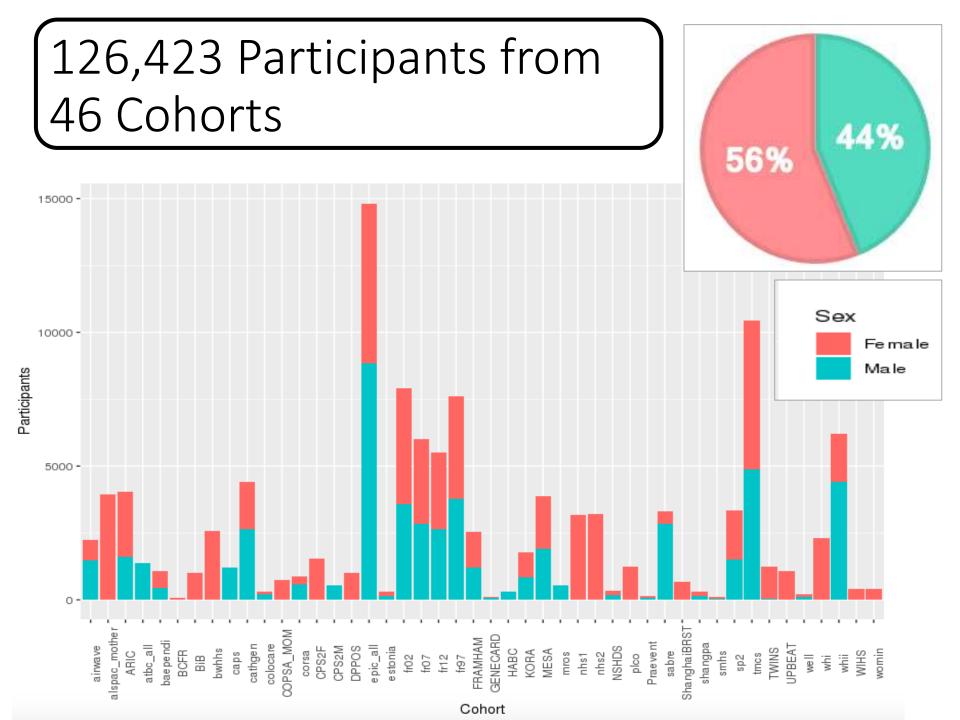
VarMap

Models

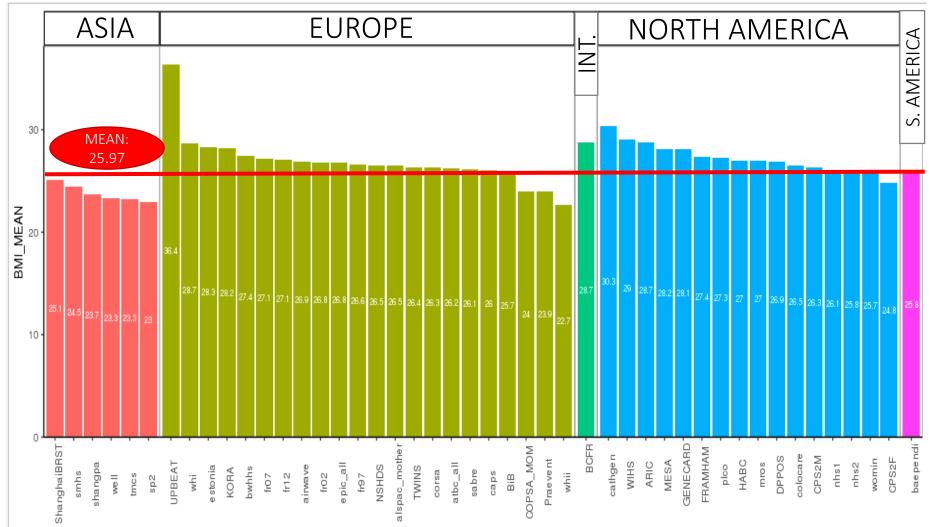
+

18

4

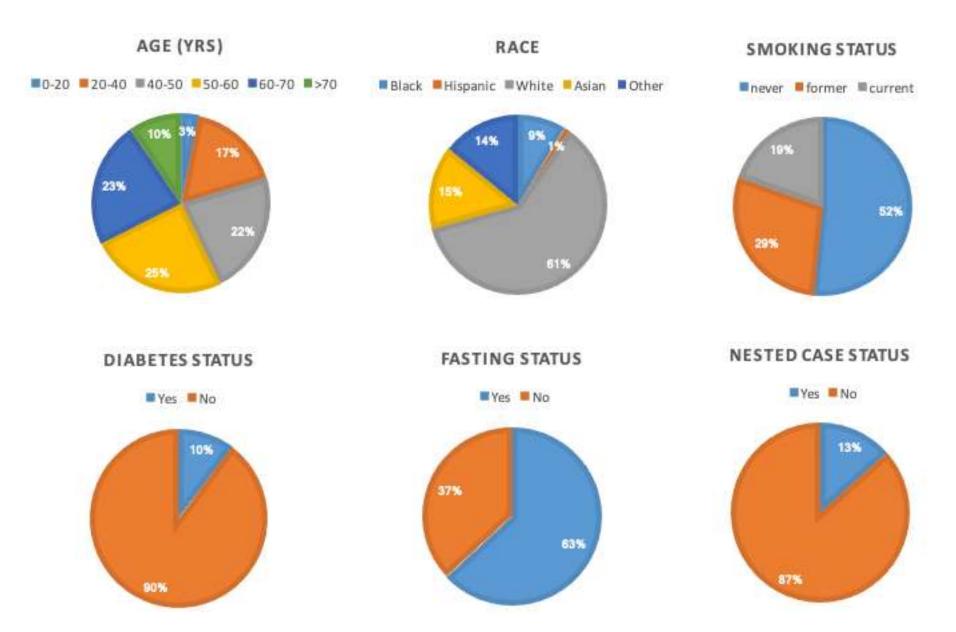


Participant Mean BMI

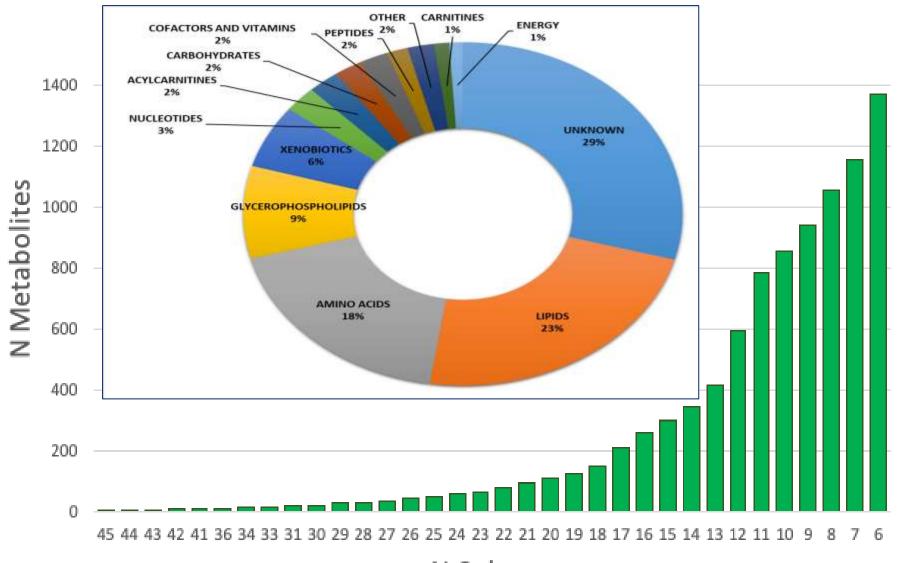


cohortID

Participant Characteristics



1367 Harmonized Metabolites



N Cohorts

BMI~Metabolite Correlations



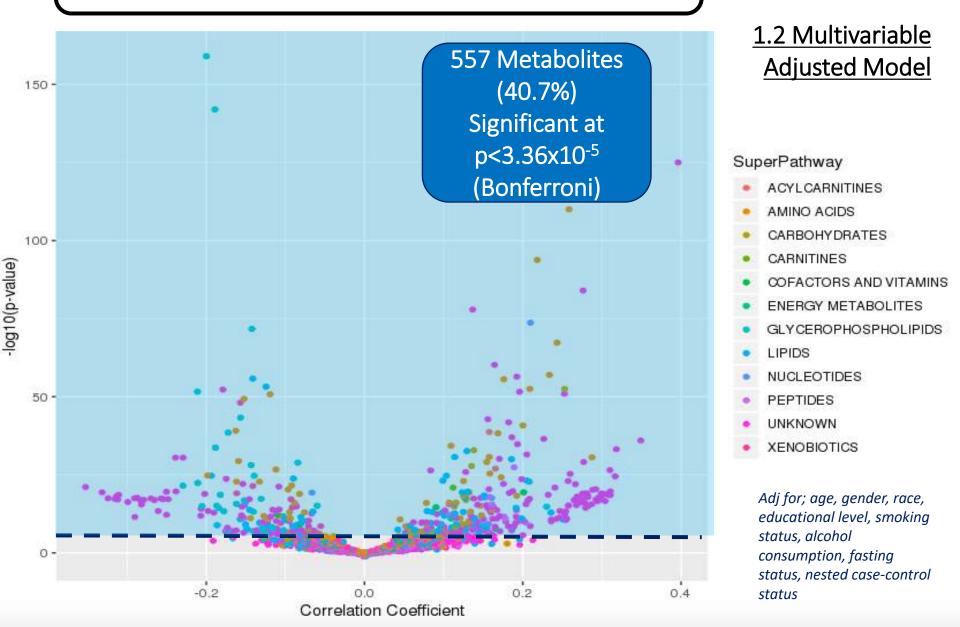
<u>1.2 Multivariable</u> <u>Adjusted Model</u>

SuperPathway

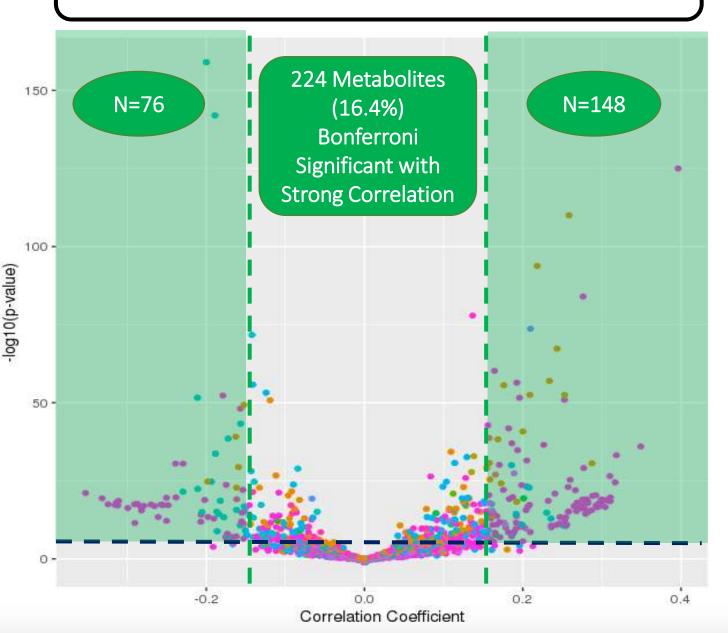
- ACYLCARNITINES
- AMINO ACIDS
- CARBOHYDRATES
- CARNITINES
- COFACTORS AND VITAMINS
- ENERGY METABOLITES
- GLYCEROPHOSPHOLIPIDS
- LIPIDS
- NUCLEOTIDES
- PEPTIDES
- UNKNOWN
- XENOBIOTICS

Adj for; age, gender, race, educational level, smoking status, alcohol consumption, fasting status, nested case-control status

BMI~Metabolite Correlations



BMI~Metabolite Correlations



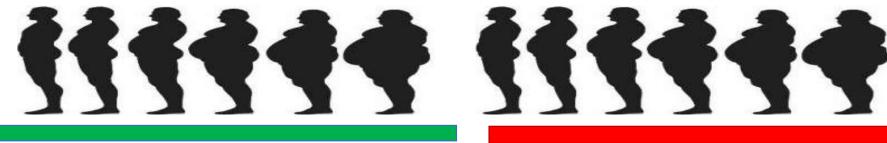
<u>1.2 Multivariable</u> <u>Adjusted Model</u>

SuperPathway

- ACYLCARNITINES
- AMINO ACIDS
- CARBOHYDRATES
- CARNITINES
- COFACTORS AND VITAMINS
- ENERGY METABOLITES
- GLYCEROPHOSPHOLIPIDS
- LIPIDS
- NUCLEOTIDES
- PEPTIDES
- UNKNOWN
- XENOBIOTICS

Adj for; age, gender, race, educational level, smoking status, alcohol consumption, fasting status, nested case-control status

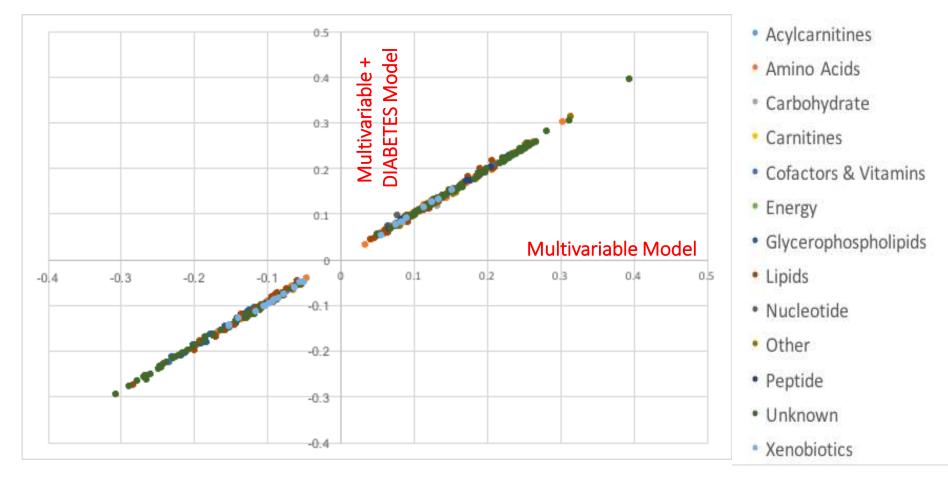
Top Metabolite Hits



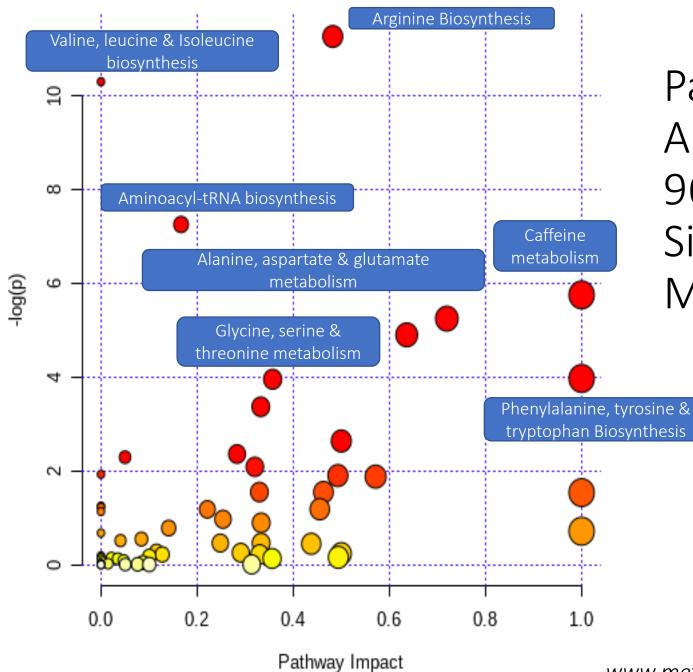
Metabolite	Superpathway	Coef. (95%Cl)	P-Value	Metabolite	Superpathway	Coef. (95%CI)	P-Value
PC(o-							
22:0/22:6(4Z,7Z,10	GLYCERO-						
Z,13Z,16Z,19Z))	PHOSPHOLIPIDS	-0.2 (-0.21,-0.19)	6.41E-160	cortolone		0 4 (0 27 0 42)	2 0 0 5 1 2 5
	GLYCERO-			glucuronide	UNKNOWN	0.4 (0.37,0.43)	2.06E-125
PC(18:0/24:0)	PHOSPHOLIPIDS	-0.19 (-0.2,-0.17)	5.90E-143	L-Valine	AMINO ACIDS	0.26 (0.24,0.28)	1.39E-110
X - 11315	UNKNOWN	-0.18 (-0.2,-0.16)	4.57E-53			0.22 (0.2.0.24)	
LysoPC(18:2(9Z,12Z	GLYCERO-			L-Tyrosine	AMINO ACIDS	0.22 (0.2,0.24)	1.76E-94
))	PHOSPHOLIPIDS	-0.21 (-0.24,-0.18)	2.56E-52	X - 17340	UNKNOWN	0.28 (0.25,0.3)	1.05E-84
Guanidinosuccinic				N2,N2-			
acid	AMINO ACIDS	-0.15 (-0.17,-0.13)	4.91E-50	Dimethyl			
Cinnamoylglycine	XENOBIOTICS	-0.16 (-0.18,-0.14)	8.32E-49	guanosine	NUCLEOTIDES	0.21 (0.19,0.23)	1.83E-74
2-3-PROPYL2-				L-Isoleucine	AMINO ACIDS	0.24 (0.22,0.27)	5.57E-68
(TRIMETHYLAMMO				L-ISOleucine	ALPHA	0.24 (0.22,0.27)	J.J/L-00
NIO)ETHYLPHOSPH				2-Hydroxy	HYDROXY		
ATE	PHOSPHOLIPIDS	, , ,	5.50E-44	butyric acid	ACIDS	0.16 (0.15,0.18)	6.64E-61
L-Asparagine	AMINO ACIDS	-0.16 (-0.19,-0.14)	7.42E-40	butyrie dela	ACIDS	0.10 (0.13,0.10)	0.042 01
	GLYCERO-			L-Leucine	AMINO ACIDS	0.23 (0.21,0.26)	1.12E-57
PC(18:1(9Z)/24:0)	PHOSPHOLIPIDS	-0.17 (-0.2,-0.15)	3.20E-39	X - 17357	UNKNOWN	0.19 (0.17,0.22)	3.61E-57
	GLYCERO-			х 1/35/	OTITIOUTI	0.13 (0.17,0.22)	5.01L 57
LysoPC(18:1(9Z))	PHOSPHOLIPIDS	-0.19 (-0.22,-0.16)	1.85E-34	L-Kynurenine	AMINO ACIDS	0.18 (0.15,0.2)	2.71E-56

Additional Adjustment for Diabetes

Comparison of Correlation Coefficients for significant metabolites in the two models



Adj for; age, gender, race, educational level, smoking status, alcohol consumption, fasting status, nested case-control status (and Diabetes)



Pathway Analysis of 969 Significant Metabolites

aboAn

www.metaboanalyst.ca

Cochrane's Q-Value

Used to assess <u>between</u> <u>Study Heterogeneity</u>

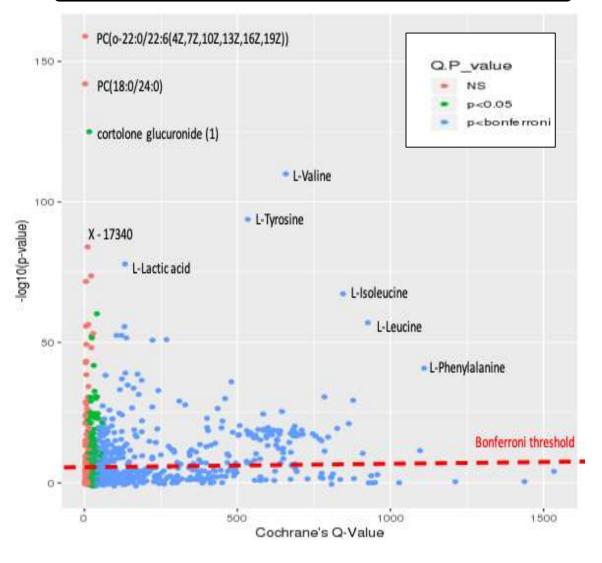
describes % variability in effect estimates due to heterogeneity rather than chance

Larger Q value (& smaller Q p-value) means more likely there is heterogeneity between studies

✤460/557 Bonferroni significant metabolites, (82.6%) were 'significantly' heterogeneous

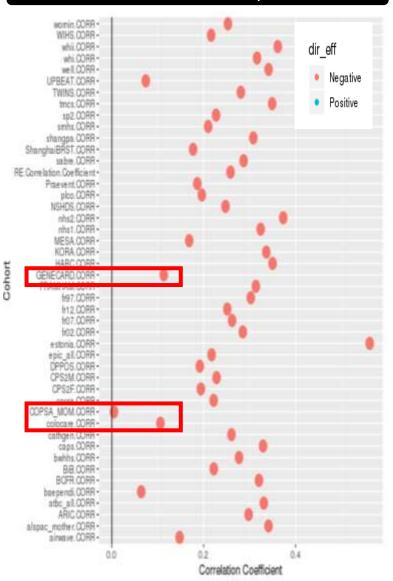
Sensitive to large numbers

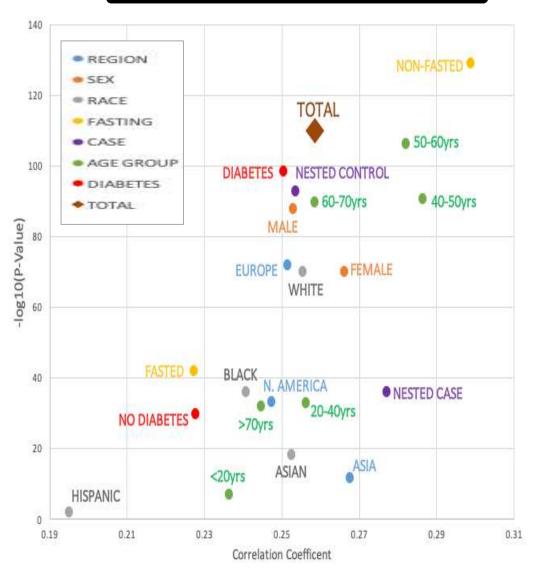
Cochrane's Q-Value versus *—log10(p-value)* for Each Metabolite



CH₃ O CH₃ O Valine H₃C H₃C OH OH NH_2 NH₂

Correlation Coefficient by Cohort

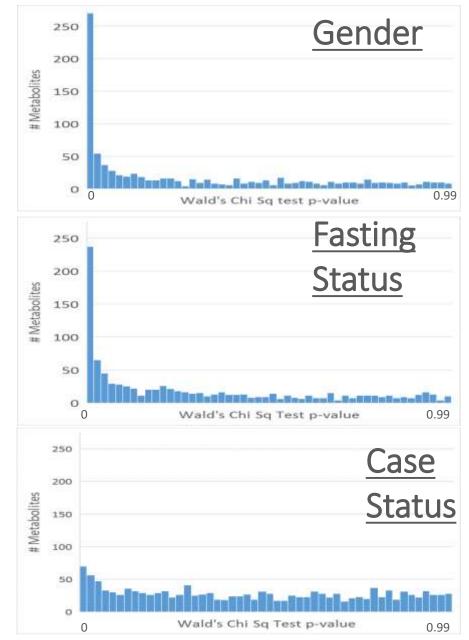


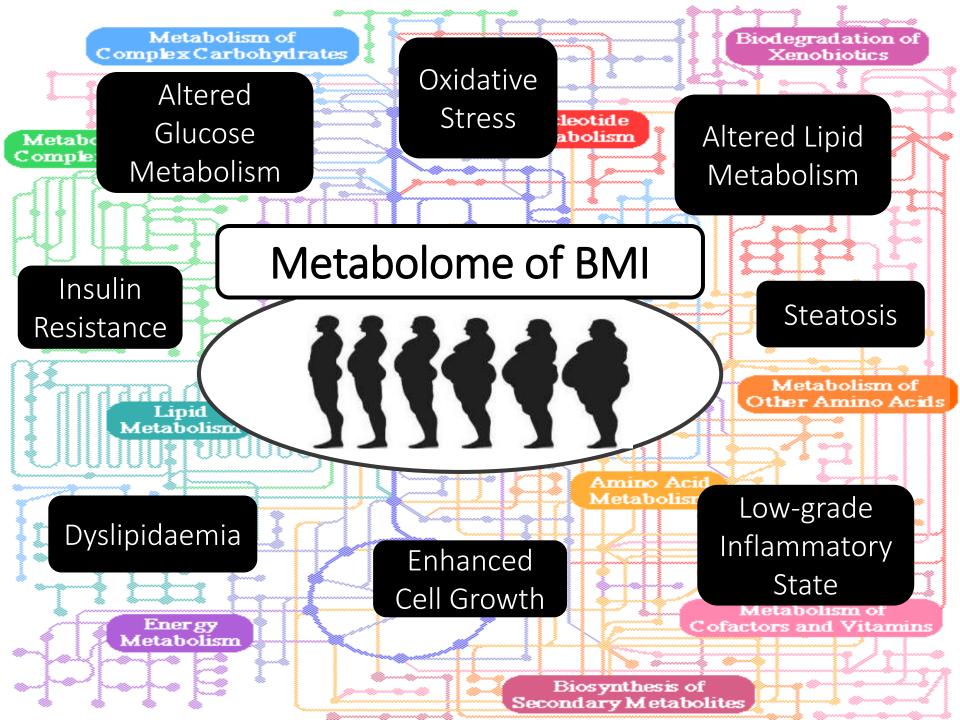


Sources of Heterogeneity

- Wald's Chi Square Test used to assess <u>between</u> <u>Strata heterogeneity</u>
- Fasting Status and Gender are the biggest sources of heterogeneity
- Case status does not appear to be a significant source of heterogeneity

N Metabolites Exhibiting Significant Heterogeneity by Strata





Conclusions & Future Directions

Conclusions

- It is feasible to perform large scale meta-analyses across multiple diverse metabolomics cohorts
 - Different populations
 - Different profiling platforms
 - Targeted and untargeted
 - NMR and Mass Spec
 - Serum and plasma

We demonstrate that such meta-analyses can provide robust and biologically informative results

An increased BMI is associated with increased levels of amino acids, in particular branched chain amino acids, and with decreased levels of cholesterol esters and High Density Lipoproteins

Next Steps

Incorporate remaining studies

- Further exploration of heterogeneity
- Assessing correlation between "top hits"
- Identification of metabolite profiles/signatures in addition to individual metabolites
- Considerations of extremes of BMI
- Consideration of adiposity measures in a subset
- Pathway/Network Interpretation

Recruitment of cohorts is ongoing

Any participating investigator can submit a project proposal for a meta-analysis across the cohorts

A wealth of data is waiting to be explored!

https://epi.grants.cancer.gov/comets/

Acknowledgements

Jessica Lasky Su (BWH, HMS)

Steven Moore (NIH)**

Kaitlyn Mazzilli

David Ruggieri

Ella Temprosa (George Washington University)

Ewy Mathe (Ohio State)

NIH: Krista Zanetti, Gwendolyn Alexandre

IMS: Nathan Appel; Adam Risch

COMETs harmonization committee: Eric Boerwinkle, Eoin Fahy, Michael Gunter, Lucas Lotta, Alexandre Pereira, Mary Playdon, Adam Risch, Josh Sampson, Bing Yu

CBIIT web development Team

The BMI writing group & Diabetes working group

All participating COMETS Cohorts

https://epi.grants.cancer.gov/comets/

National Institutes of Health

<u>Questions</u>: Rachel Kelly (<u>hprke@channing.harvard.edu</u>)