

Ulf Ekelund (@Ulf_Ekelund) ulf.ekelund@nih.no

Department of Sports Medicine

Department of Sports Medicine NORWEGIAN SCHOOL OF SPORT SCIENCE

Outline

- The International Children's Accelerometry Database (ICAD)
 - Background (ICAD 1.0)
 - Expansion (ICAD 2.0)
- Data harmonisation
 - Phenotypic data
 - Accelerometer data
 - Data availability

Why a pooled data base on childrens physical activity? ICAD 1.0

What we knew

- What we didn`t know
 - Population levels and cultural differences
 - Dose-response:
 - Frequency, Intensity, Duration, Mode
 - Inter-relations between movement behaviours, sedentary behaviour and sleep)
 - Effect modifiers: population subgroups
 - Correlates and Determinants

Department of Sports Medicine

Background for ICAD 1.0

- · Data availability Accelerometer data collected in many studies
- Variability in data cleaning and reduction methods precludes comparison (e.g. Cain et al. 2013)
- <u>ICAD</u> aimed to harmonise raw Actigraph accelerometer data, sociodemographic and phenotypic data using standardised methods to create comparable exposure and outcome variables across studies to improve our knowledge regarding the strength of relationships between physical activity and health and to better understand the correlates and determinants of movement behaviors.

Background

- Individual person data pooling
 - Increase statistical power mediation / interaction analyses
 - create a more heterogeneous and potentially more representative sample
 - standardize and optimize the analytical methods used in the generation of outcome variables
 - provide a means to study the causes of inter-study variability in physical activity

Background

- ICAD established in 2007 with funding from the National Prevention Research Initiative (NPRI)
- Collaboration between University of Bath, University of Bristol and the MRC Epidemiology Unit, Cambridge
 - Chris Riddoch
 - Ulf Ekelund
 - Ken Judge
 - Ashley Cooper

The Original ICAD Team

4

Sherar et al. BMC Public Health 2011, 11:485 http://www.biomedcentral.com/1471-2458/11/485

RESEARCH ARTICLE

Open Access

International children's accelerometry database (ICAD): Design and methods

Lauren B Sherar^{1*}, Pippa Griew², Dale W Esliger¹, Ashley R Cooper³, Ulf Ekelund^{4,5}, Ken Judge⁶ and Chris Riddoch⁶

Current expansion ICAD 2.0

Aims

- Add additional waves of accelerometer data and a wider range of non-accelerometer data from existing studies
- Harmonize a broader range of phenotypic information from existing studies <u>http://www.mrc-</u> epid.cam.ac.uk/research/studies/icad/data-harmonisation/
- Strategy
 - New waves of data submitted: 13 studies with at least two timepoints
 - Additional variables from original submission: 7 studies
 - Approx. 55.000 accelerometer data files processed
 - 13 studies

ICAD 2.0 Working group

Data harmonisation

- Aim to attain, or at least improve, the comparability of information collected from different sources
 - · Get your data ducks swimming in the same direction
- Non-accelerometer data
 - Retrospective data harmonisation requires clear, detailed notes on all variables in each study
 - >11,000 variables across 30 different constructs
- · Currently Harmonised variables
 - · Anthropometric, demographic, health, and correlates/determinants

Data harmonisation

- Accelerometer data
 - ~55.000 accelerometer files from 21 studies
 - 49 waves of data collection from these studies
 - 49+ variations of initialization and deployment strategies
 - Three step process

STEP 1 – Standardising input data

- All file formats from any generation of ActiGraphs
 - CSA, MTI, GT1M, GT3X, GT3X+
 - Analysed by the Kinesoft software

STEP 1 – Standardising input data (60 sec epoch and vertical axis)

Q10114 - Notepad File Edit Format View Help Data File Created By ActiGraph GTIM ActiLife v3.6.0 Firmware v4.2.0 erial Number: trNZD36089983 tart Time 08:00:00 tart Tate 02/03/2009 poch Period (hh:mm:ss) 00:00:05 omnload Time 14:37:40	Example: DAT-file (GT1M) with header mode 5: initialised in mode 5 (Vertical axis, 2nd axis, steps – three streams of data in the file)
ownload pate 30/03/2009 wret Markey Address: 807840 wode = 5 with Rattery Voltage: 3.88 wode = 5 $\frac{1177}{172}$ 297 7 164 247 7 173 252 4 177 205 143 16 165 66 12 1392 327 4 96 340 0 0 0 0 0 0 0 0 0 25 67 143 205 2 158 246 5 99 245 4 94 70 120 188 4 113 156 4 201 251 8 216 327 143 205 2 158 286 5 99 245 4 94 70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	 Original DAT exported to an AGD The AGD file exported to CSV CSV file opened in Excel Deleted all but the first column of data in the CSV file Changed the mode from 5 to 0 in the ninth line of the CSV file Saved the CSV file Converted the CSV file to AGD in ActiLife Exported the new AGD to DAT in ActiLife Reintgrated the new DAT file to 60 second epoch in Kinesoft

Department of Sports Medicine

STEP 2 – Establish the validity

• Each single accelerometer file manually examined for validity

STEP 2 – Establish validity

	Kaw File: 01021208.dat	
	SN:12085 Ver 2.2	
	Start Time 06:00:00	
• Valid (0)	Start Date 06-03-2005 Epoch Period (hh:mm:ss) 00:01:00	
	Download Time 11:54:24	
 Not valid (coded 1-3) 	Download Date 06-07-2005	
	Current Memory Address: 5462	
· Spurious (1)	Battery Life Remaining: 3525 hrs	
 Spurious (1) 	196602 196602 196602 196602 196602 196602 196602 196602 196602 196602	1966
		1966
 Plateauing 	196602 196602 196602 196602 196602 196602 196602 196602 196602 196602	1966
		1966
		1966
		1966
		196
		1966
		1966
Difficult to detect when		1966
		196
data is processed	196602 196602 196602 196602 196602 196602 196602 196602 196602 196602	196
		196
		196

STEP 2 – Establish validity

STEP 2 – Establish validity

- Valid (0)
- Non valid (1-3)
 - Spurious (1)
 - Plateauing
 - Not returning to zero

STEP 2 – Establish validity

- Valid (0)
- Non valid (1-3)
 - Spurious (1)
 - Plateauing
 - Not returning to zero
 - Translocated files (2)

STEP 2 – Establish validity

STEP 2 – Establish validity

- Valid (0)
- Non valid (1-3)
 - Spurious (1)
 - Plateauing
 - Not returning to zero
 - Translocated files (2)

Valid: ~98% Spurious: ~1-2% Translocated: ~0.4%

Department of Sports Medicine

Step 3 – Determine wear period

- 7 consecutive days of data are extracted, and read-in file assures best 7 day fit
- Important since every wave of every study was analysed in one batch.

Step 3 – Determine wear period

Applying rules and cut-points

- · Non-wear criteria: 60 mins cons strings of zero (2 drops) ALL
- 480 minutes/day default users can apply own wear time criteria
- · Daylight saving time according to study site
- · Cut-points and bout-length definitions applied
- AVAILABLE VARIABLES (>15,000)
 <u>Counts and minutes</u>
 Total, daytype, day, hour-by-hour

Accumulated intensity-specific minutes

Total, daytype, day, hour-by-hour

Bouted intensity-specific minutes

Total, day type, day

http://www.mrc-epid.cam.ac.uk/research/studies/icad/

Cutpoint Title	Start Value (>=)	Start Value Type	End Value (<)	End Value Type
0 50	0.0	Counts	50.0	Count
50 100	50.0	Counts	100.0	Count
100 150	100.0	Counts	150.0	Count
150 250	150.0	Counts	250.0	Count
250 500	250.0	Counts	500.0	Count
500 750	500.0	Counts	750.0	Count
750 1000	750.0	Counts	1000.0	Count
1000 1500	1000.0	Counts	1500.0	Count
1500 2000	1500.0	Counts	2000.0	Count
2000 2500	2000.0	Counts	2500.0	Count
2500 3000	2500.0	Counts	3000.0	Count
3000 3500	3000.0	Counts	3500.0	Count
3500 4000	3500.0	Counts	4000.0	Count
4000 4500	4000.0	Counts	4500.0	Count
4500 5000	4500.0	Counts	5000.0	Count
5000 6000	5000.0	Counts	6000.0	Count
6000 8000	6000.0	Counts	8000.0	Count
8000 up	8000.0	Counts	99999.0	Count
Sedentary_50	0.0	Counts	50.0	Count
Sedentary_100	0.0	Counts	100.0	Count
Sedentary 150	0.0	Counts	150.0	Count
LPA 50 2000	50.0	Counts	2000.0	Count
LPA 100 2000	100.0	Counts	2000.0	Count
LPA 150 2000	150.0	Counts	2000.0	Count
LPA 50 3000	50.0	Counts	3000.0	Count
LPA 100 3000	100.0	Counts	3000.0	Count
LPA 150 3000	150.0	Counts	3000.0	Count
MPA 2000 6000	2000.0	Counts	6000.0	Count
MPA 3000 6000	3000.0	Counts	6000.0	Count
VPA 6000 up	6000.0	Counts	99999.0	Count
MVPA 2000 up	2000.0	Counts	99999.0	Count
MVPA 3000 up	3000.0	Counts	99999.0	Count
LVPA 50	50.0	Counts	99999.0	Count
LVPA 100	100.0	Counts	99999.0	Count
LVPA 150	150.0	Counts	99999.0	Count
Evenson SED	0.0	Counts	101.0	Count
Evenson LPA	101.0	Counts	2296.0	Count
Evenson MPA	2296.0	Counts	4012.0	Count
Evenson VPA	4012.0	Counts	99999.0	Count
Evenson MVPA	2296.0	Counts	99999.0	Count
Evenson LVPA	100.0	Counts	99999.0	Count
Pate SED	0.0	Counts	800.0	Count
Pate LPA	800.0	Counts	1680.0	Count
Pate MPA	1680.0	Counts	3368.0	Count
Pate VPA	3368.0	Counts	99999.0	Count
Pate MVPA	1680.0	Counts	99999.0	Count
Pate lypa	800.0	Counts	99999.0	Count

Depa

Department of Sports Medicine

Online data dictionary

- Summary of data processing
 - 55,386 accelerometer data files processed
 - Around 220 hours of processing time over about 3 weeks
 - 392 excel spread sheets
 - · Merged with other variables
 - Available through online data dictionary with shopping cart function

Variab	les			
Show	10 • entries			
Search	ĸ			
SortID	Variable grouping	Group description	View variable	is S
101	Accumulated_Intensity_Sedentary(0_150)_Hourly	Description	Show	Т
102	Accumulated_Intensity_Light (50_3000)_Hourly	Description	Show	Т
103	Accumulated_Intensity_Moderate (3000_6000)_Hourly	Description	Show	
104	Accumulated_Intensity_LVPA (100_up)_Hourly	Description	Show	T
105	Accumulated_Intensity_LVPA (150_up)_Hourly	Description	Show	T
106	Accumulated_Intensity_Evenson_Hourly	Description	Show	T
107	Accumulated_Intensity_Pate_Hourly	Description	Show	
108	Accumulated_Intensity_Light (100_3000)_Hourly	Description	Show	Т
109	Accumulated_Intensity_Light (150_3000)_Hourly	Description	Show	T
110	Vitals	Description	Show	T
Showin	ng 101 to 110 of 136 entries			
Previ	ious			Ne
Basket				
		Name		Remo
Develop	d as CSV Show list			_

http://www.mrc-epid.cam.ac.uk/research/studies/icad/

Department of Sports Medicine NORWEGIAN SCHOOL OF SPORT SCIENC

ortID	Variable grouping	Group description	View variable	es Select
101	Accumulated_Intensity_Sedentary(0_150)_Hourly	Description	Show	
102	Accumulated_Intensity_Light (50_3000)_Hourly	Description	Show	
103	Accumulated_Intensity_Moderate (3000_6000)_Hourly	Description	Show	
104	Accumulated_Intensity_LVPA (100_up)_Hourly	Description	Show	
105	Accumulated_Intensity_LVPA (150_up)_Hourly	Description	Show	
106	Accumulated_Intensity_Evenson_Hourly	Description	Show	
107	Accumulated_Intensity_Pate_Hourly	Description	Show	
108	Accumulated_Intensity_Light (100_3000)_Hourly	Description	Show	
109	Accumulated_Intensity_Light (150_3000)_Hourly	Description	Show	
110	Vitals	Description	Show	
111	Accumulated_Intensity_Moderate (2000_6000)_Hourly	Description	Show	
112	Accumulated_Intensity_Vigorous (6000_up)_Hourly	Description	Show	
113	Accumulated_Intensity_MVPA (2000_up)_Hourly	Description	Show	
114	Accumulated_Intensity_MVPA (3000_up)_Hourly	Description	Show	
115	Accumulated_Intensity_LVPA (50_up)_Hourly	Description	Show	
116	Wear_Counts_Daily	Description	Show	
117	Wear_counts_Totals	Description	Show	
118	Weartime_Minutes_Totals	Description	Show	
119	Wear_Counts_Hourly	Description	Show	
120	Wear_Minutes_Hourly	Description	Show	
121	StD_Age	Description	Show	
122	AM_Birthweight	Description	Show	
123	AM_Glucose	Description	Show	
124	AM_Insulin	Description	Show	
125	AM_HDL	Description	Show	

19	Wear_Counts_Hourly	Description wearCts+riHrU3	Hide
		WearCtsFriHr04	
		WearCtsFriHr05	
		WearCtsFriHr06	
		WearCtsFriHr07	
		WearCtsFriHr08	
		WearCtsFriHr09	
		WearCtsFriHr10	
		WearCtsFriHr11	
		WearCtsFriHr12	
		WearCtsFriHr13	E
		WearCtsFriHr14	
		WearCtsFriHr15	
		WearCtsFriHr16	
		WearCtsFriHr17	
		WearCtsFriHr18	-
		4	4
12	20 Wear_Minutes_Hourly	Description	Hide
		WearMinFriHr03 WearMinFriHr04	A
		WearMinFriHr05	
		WearMinFriHr06	
		WearMinFriHr07	
		WearMinFriHr08	
		WearMinFriHr09	
		WearMinFriHr10	
		WearMinFriHr11	
		WearMinFriHr12	
		WearMinFriHr13	=
		WearMinFriHr14	
		WearMinFriHr15	
-		WearMinFriHr16	
		WearMinFriHr17	
		WearMinFriHr18	*
		4	

Online data dictionary

- ICAD is an open data base
- Data base managed by the MRC Epidemiology Unit
- Simple Application procedure
- Data user agreement
- Authorship rules/Publication guidelines
- Working group
- Steering Group
- Newsletter

Harmonising data on the correlates of physical activity and sedentary behaviour in young people: Methods and lessons learnt from the international Children's Accelerometry database (ICAD)

Andrew J. Atkin^{1,2*}, Stuart J. H. Biddle³, Stephanie T. Broyles⁴, Mai Chinapaw⁵, Ulf Ekelund⁶, Dale W. Esliger⁷, Bjorge H. Hansen⁶, Susi Kriemler⁸, Jardena J. Puder⁹, Lauren B. Sherar⁷, Esther M. F. van Sluijs² and On behalf of the International Children's Accelerometry Database (ICAD) Collaborators

Conclusion: The project to expand ICAD further demonstrates the feasibility of pooling data on physical activity, sedentary behaviour and potential determinants from multiple studies. Key to this process is the rigorous conduct and reporting of retrospective data harmonisation, which is essential to the appropriate analysis and interpretation of derived data. These documents, made available through the ICAD website, may also serve as a guide to others undertaking similar projects.

(Atkin et al, IJBNPA 2017)

Cross-Sectional Associations of Reallocating Time Between Sedentary and Active Behaviours on Cardiometabolic Risk Factors in Young People: An International Children's Accelerometry Database (ICAD) Analysis

Bjørge Herman Hansen¹ • Sigmund Alfred Anderssen¹ • Lars Bo Andersen^{1,2} • Maria Hildebrand¹ • Elin Kolle¹ • Jostein Steene-Johannessen¹ • Susi Kriemler³ • Angie S. Page⁴ • Jardena J. Puder⁵ • John J. Reilly⁶ • Luis B. Sardinha⁷ • Esther M. F. van Sluijs⁸ • Niels Wedderkopp⁹ • Ulf Ekelund¹ • On behalf of the International Children's Accelerometry Database (ICAD) Collaborators

Key Points

Our results show beneficial theoretical associations between replacing as little as 10 min/day of sedentary time with an equal amount of time spent in moderate-to-vigorous physical activity and a wide array of cardiometabolic risk markers in healthy youth.

Replacing sedentary time with an equal amount of light physical activity showed minor beneficial associations with cardiometabolic risk markers.

Replacing sedentary time with active behaviours, particularly those of at least moderate intensity, appears to be an effective strategy to reduce cardiometabolic risk in young people.

(Hansen et al, Sports Med 2018)

ORIGINAL ARTICLE

Does adiposity mediate the relationship between physical activity and biological risk factors in youth?: a cross-sectional study from the International Children's Accelerometry Database (ICAD)

J Tarp¹, A Bugge¹, LB Andersen^{2,3}, LB Sardinha⁴, U Ekelund^{3,5}, S Brage⁵ and NC Møller¹ On behalf of the International Children's Accelerometry Database (ICAD) Collaborators

CONCLUSIONS: One hour of daily moderate-to-vigorous physical activity was associated with clinically relevant differences in metabolic control compared to engagement in less than this minimally recommended amount. The majority of the difference was explained by the direct effect of physical activity.

(Tarp et al, Int J Obes 2017)

Association between maternal education and objectively measured physical activity and sedentary time in adolescents

Lauren B Sherar,¹ Tom P Griffin,² Ulf Ekelund,^{3,4} Ashley R Cooper,⁵ Dale W Esliger,¹ Esther M F van Sluijs,^{4,6} Lars Bo Andersen,^{3,7} Greet Cardon,⁸ Rachel Davey,⁹ Karsten Froberg,⁷ Pedro C Hallal,¹⁰ Kathleen F Janz,¹¹ Katarzyna Kordas,¹² Susi Kriemler,¹³ Russell R Pate,¹⁴ Jardena J Puder,¹⁵ Luis B Sardinha,¹⁶ Anna F Timperio,¹⁷ Angie S Page⁵

Conclusions Across a number of international samples, adolescents of mothers with lower education may not be at a disadvantage in terms of overall objectively measured PA.

(Sherar et al, J Epi Com Health 2016)

Department of Sports Medicine

MEET THE TEAM

ICAD Working Group

Ulf Ekelund Esther van Sluijs Lauren Sherar Dale Esliger Andy Atkin Bjørge Herman Hansen

ICAD Data management

Susie Boatman Adam Dickinson Inge Loudon Tom White Anna Melachrou

ICAD Partners

Katarzyna Kordas/Lynn Molloy/Kate Northstone Jardena J Puder Greet Cardon Rachel Davey Russ Pate Jo Salmon Lars Bo Andersen Niels Christian Moller Luis B Sardinha Sigmund Anderssen Anna Timperio Kathleen F Janz Susi Kriemler John J Reilly Angie Page Pedro C Hallal

MRC

bidemiology Unit

Department of Sports Med