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Individual level studies

() O Individual level: socio-economics,
T demographic, attitude, behaviour
W

active travel modes, leisure time physical
activity, accelerometer-based data

[ ) [ )
w W L Outcome variable: walking time, use of
U Determinants: age, sex, car ownership,

occupation, attitudes, neighbourhood
perception
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Area level studies

U Size of areal unit: Neighbourhoods,
wards, cities, regions, or countries

L Outcome variable: Prevalence of physical
inactivity, proportion of adults engaging
in active travel

U Determinants: City structure, land-use
i ¢ mix, walkability, cycle infrastructure
https://academicworks.cuny.edu/cgi/viewcontent.cgi network’ SpraW|, denSIty’

?article=1197&context=jj_pubs
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Walking activity across the world
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Althoff, T., Hicks, J. L., King, A. C., Delp, S. L., & Leskovec, J. (2017). Large-scale
physical activity data reveal worldwide activity inequality. Nature, 547(7663), 336.

Gender inequality in walking levels in US cities
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Association of Available Parkland, Physical
Activity, and Overweight in America’s
Largest Cities

Stephanie T. West, PhD; Kindal A. Shores, PhD; Lanay M. Mudd, PhD

The link between obesity and the built environment.
Evidence from an ecological analysis of obesity and vehicle
miles of travel in California

Javier Lopez-Zetina®*, Howard Lee”, Robert Friis®

Commuting in Transit Versus Automobile
Neighborhoods

Robert Cervero & Roger Gorham

Google Street View: A case study
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Google Street View: a case study
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Amsterdam G
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Objectives

travel and motor vehicle use at
city level using Google Street
View (GSV)
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Google Street View API

* The process of selecting a location on
map, accessing the street view and
deciding the direction of view is
automated through an API

* The images can be accessed using a
command line:
https://maps.googleapis.com/maps/api/streetview?size=600x400&Io

cation=46.414382,10.013988&heading=151.78&pitch=-
0.76&key=YOUR_API_KEY

In web browser.

. APl output
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Case Study

* We used Primary Urban Areas (PUA) as the
units of analysis

* PUAs are formed by combining contiguous
local authorities

* A total of 34 cities: 25 randomly sampled
and rest included to account for Biobank

centres
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Sampling of images

* Two stage sampling
¢ Random location on all road links in the network
* Selection of 1000 random points in each city

* For each location two images were accessed
in two opposite directions: headings of 0 and
180 degrees

* 2000 images per city

Webpage for GSV questionnaire

UNIVERSITY OF
CAMBRIDGE rg574

Back 1o main minu
11 yous do not see o pedestrian, cycle, motorcyce, scooter, car, or bus please diick NEXT. Note that vehicles can be moving or parked.
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GSV outputs

Expressed as number of images with different road users
(total 2000 images per city)

PUA Cycles Parked Cycles |Pedestrians| Cars Buses Motorcycles
Cambridge 94 132 281 1412 44 19
Oxford 76 127 347 1488 74 17
Brighton 44 87 371 1604 54 42
York 34 12 169 1367 29 12
Hull 32 14 239 1488 18 10
Ipswich 28 9 234 1476 22 22
Norwich 21 5 172 1259 17 15
Edinburgh 20 15 244 1430 54 15
Slough 19 3 192 1620 17 7
Blackpool 17 10 276 1563 19 14

Comparison datasets

Census

v/Last conducted in 2011
v'Usual mode of travel to work v* CATI surveys for a small sample
v'Covers all population

Active People Survey
v’ Conducted annually

of adults
v’ Self-reported walking and
cycling (past-month)

Used 2011 as the common year to both datasets
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Correlation/Regression analysis

Predictors Outcomes

Past month
Walking/Cycling

GSV counts of
road users

Commute mode
shares

Correlations
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Correlations

(c) Commute share of walking
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How do different datasets compare?
(Pearson correlation)
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How do different datasets compare?
(Pearson correlation)

All-purpose cycling
measure for adults

APS
, Cycllng\
Proportion of ﬁ Street Vi
commuters cycling Census GSV Obrse:rvaliexs

to work

21

Census and Active People Survey (Cycling)
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803 .
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Commute share of public transport

and walk

Census and Active People Survey (Walking)
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Estimating city-level travel patterns using
street imagery: A case study of using Google

Street View in Britain

Rahul Goel'#, Leandro M. T. Garcia', Anna Goodman?, Rob Johnson', Rachel Aldred®,
Manoradhan Murugesan®, Soren Brage®, Kavi Bhalla®, James Woodcock®
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Check for
updates
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Conclusions

* Area level harmonisation needs a different outlook than
individual level harmonisation

* Make better use of reported aggregate numbers at the area
level

* Growing use of smartphone-based data may be less
informative at the individual level

* Methods need to be refined
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