

An epigenome-wide association study of television viewing time in the Melbourne Collaborative Cohort Study

Eline van Roekel

ISPAH SBC Satellite Workshop Cambridge, 13 October 2018

© Cancer Council | 13 October 2018 | cancervic.org.au

Sedentary behaviour and health

Television viewing time

3 | TV viewing and DNA methylation

DNA methylation

Objective

To study associations of television viewing time with DNA methylation within the Melbourne Collaborative Cohort Study (MCCS)

5 | TV viewing and DNA methylation

Study design

- Melbourne Collaborative Cohort Study:
 - 1990-1994: 41,513 participants recruited
 - 2003-2007: 28,240 with follow-up 2 measurements
- Data used of seven nested case-control studies on cancer:
 - Follow-up 2: N = 1,249 (mostly controls)

Television viewing time assessment

- International Physical Activity Questionnaire (IPAQ)
- Television viewing time on week and weekend days (hours/day)
- 149 participants: total time spent sitting on week and weekend days (hours/day)
 → combined quintiles of television viewing or sitting time
- MET-hours/week of total physical activity: leisure-time physical activity + walking

7 | TV viewing and DNA methylation

DNA methylation measurement

- DNA extracted from peripheral blood samples:
 - Dried blood spots
 - Peripheral blood mononuclear cells
 - Buffy coats
- Illumina Infinium HumanMethylation450K BeadChip (HM450K) array
- Measures methylation at >450,000 CpG sites
- 96 samples per plate, 12 samples per chip
- Genetic Epidemiology Laboratory, The University of Melbourne

Processing of methylation data

- Background correction and normalization
- Exclusion of samples:
 - Sex different than predicted
 - Bad measurement (detection P-value)
 - >5% of CpG sites with missing values
- Exclusion of CpG sites with >20% samples missing
- Calculation of β-values (proportion methylation)

 $M = \log_2 \frac{\beta}{1 - \beta}$

• Transformed into M-values for analysis:

9 | TV viewing and DNA methylation

Statistics: epigenome-wide association study

- Linear-mixed regression in R
- Testing associations with M-values at each CpG site for:
 - Television viewing time (N = 1,078)
 - Quintiles of TV viewing and sitting time (N = 1,227)
- Adjustment for potential confounders including age, sex, country of birth, socio-economic status, smoking, alcohol, study and estimated white blood cell composition (fixed effects)

Statistics: epigenome-wide association study

- Adjustment for MET-hours/week of total physical activity, including both dichotomous and continuous variable (fixed effect)
- Adjustment for relevant technical factors: chip and plate (random effects)
- P-value thresholds:
 - Significant: P<10⁻⁷
 - Weak evidence: P<10⁻⁵
- Sensitivity analysis: additional adjustment for BMI

11 | TV viewing and DNA methylation

Adjustment for BMI?

Statistics: pathway analysis

- gometh function of the R package missMethyl
- Map CpG sites to genes
- Evaluate overrepresentation of KEGG pathways
- CpG sites with associations P<10⁻⁴

13 | TV viewing and DNA methylation

Results: Descriptives demographics

	Follow-up 2 (N = 1,249)
Age (years), mean (SD)	69 (8)
Males, n (%)	868 (68%)
Country of birth, n (%)	
Australia/New Zealand/Other	957 (77%)
Greece	51 (4%)
Italy	103 (8%)
United Kingdom/Malta	138 (11%)

Results: Descriptives lifestyle

	Follow-up 2 (N = 1,249)
TV viewing time (hours/day), median (IQR)	3 (2-4)
Total MET-hours/week, median (IQR)	17 (7-35)
Smoking status, n (%)	
Never	605 (48%)
Former	567 (45%)
Current	77 (6%)
Alcohol intake (g/day), median (IQR)	2 (0-3)
Body mass index (kg/m2), mean (SD)	27 (4)

15 | TV viewing and DNA methylation

Results: Television viewing time (N = 1,078)

Results: Quintiles of TV viewing and sitting time (N = 1,227)

Results: additional adjustment for BMI

Results: Pathway analysis

- 66 and 60 CpG sites with P<10⁻⁴ for TV viewing time and quintiles of TV viewing and sitting time (24 in common)
- Over-representation of KEGG pathways:
 - MicroRNAs in cancer: CDK6, NOTCH4, TP63, HDAC4
 - RNA degradation: LSM4, PFKL
 - p53 signalling pathway: CDK6, ZMAT3

19 | TV viewing and DNA methylation

Discussion: Summary results

- Weak evidence of cross-sectional associations:
 - Television viewing time with 9 CpG sites
 - Quintiles of TV viewing and sitting time with 5 CpG sites
- Mostly positive associations
- Non-overlapping and independent from physical activity
- Results indicate that tumour suppressor gene networks and microRNA-related mechanisms may be involved

Discussion: Strengths and Limitations

- Strengths:
- First EWAS to date
- Large study sample, but maybe not enough?
- Pathway analysis
- Limitations:
 - Self-reported data on TV viewing time and sitting
 - Cross-sectional analysis

21 | TV viewing and DNA methylation

Conclusion

TV viewing time may be associated with DNA methylation

Recommendations for future research:

• Larger sample sizes

FUTURE

- Accelerometer data
- Mechanistic studies: influence on gene expression and health

Acknowledgements

MCCS participants

Collaborators in Melbourne, Australia

Pierre-Antoine Dugué Chol-Hee Jung Eric Joo Enes Makalic Ming Wong Dallas English Melissa Southey Graham Giles Brigid Lynch Roger Milne Genetic Epidemiology Laboratory & Melbourne Bioinformatics, The University of Melbourne

Cancer Epidemiology and Intelligence Division, Cancer Council Victoria

Funding: Endeavour Research Fellowship, Australian Government (6059-2017); MCCS and methylation studies from multiple NHMRC grants.

