

Applications of Geospatial Data and Methods in Environmental Epidemiology

S.M. Labib Department of Geography, School of Environment, Education and Development University of Manchester.

<u>smlabib.com</u>

20-02-2020

<u>Who Am I?</u>

I am Labib.

From Bangladesh, travelled from Manchester.

My Academic Journey:

- BSc in Urban and Regional Planning (2014), Bangladesh University of Engineering and Technology.
- MSc in Geographical Information Science (2017), University of Manchester.
- PhD in Physical Geography (2017-2020, submission), University of Manchester.

Research Interests:

Geographic Information Science, Remote Sensing, Green Infrastructure, Transportation planning, and Environmental Epidemiology.

Bangladesh University of Engineering and Technology

Research Groups:

Mapping: Culture and Geographical Information Science (MCGIS); Environmental Processes (EPRG)

1

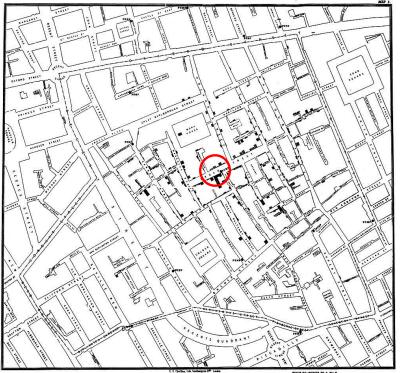
Content & Outline

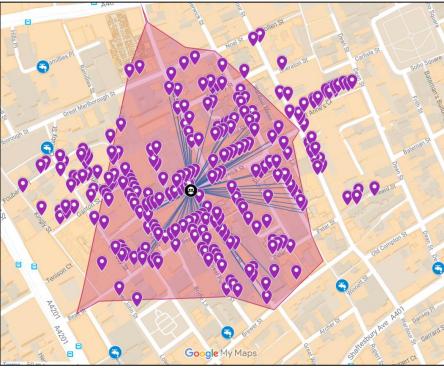
 Brief Overview of geospatial data and methods in]
epidemiology (5 min)	
- Historic example and now	Part-I
- Geospatial approaches in practice	
Exposure assessment	
 Geospatial Data and methods case studies (10 min) 	1
- Airborne imagery data,	Part-2
- OpenStreeMap data,	i ai t-Z
- Volunteer GIS data	J
 Examples of model coupling and their applications (10 min) 	1
- Applying in transportation sustainability	Part-3
- Combining machine learning models with spatial data	J
• Spatial dimensions in greenspace and health research- a	•
systematic review (20 min)	
- Scale	D (
- Exposure assessment (data, methods)	Part-4
- The buffering issue	
- MAUP and spatial autocorrelation	1
• Q-A? (15 min)	

References

Part -1: Brief Overview of geospatial data and methods in epidemiology

Past and present...





Map 1854

2020

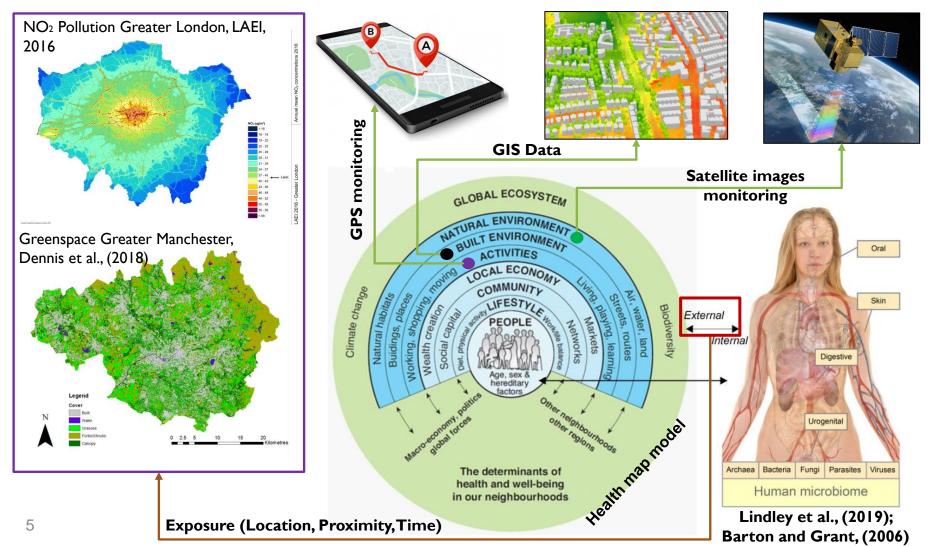
1854 Broad Street cholera outbreak

- What is the average distance from the contaminated pump to the surrounding locations?
- What is there now? <u>http://tiny.cc/9j17jz</u>

Data Source: <u>http://blog.rtwilson.com/john-snows-cholera-data-in-more-formats/</u> Full Story: <u>https://youtu.be/INjrAXGRda4</u>

Geospatial approaches in practice

- Environmental Factors: Pollution sources (e.g., air, water pollution), natural environment, built environment. Spatial Data dominance!
- External influence measurement: Exposure assessment- a function of location (proximity) and time (Nieuwenhuijsen, 2009). Spatial Methods dominance!



Part -2: Geospatial Data (case studies)

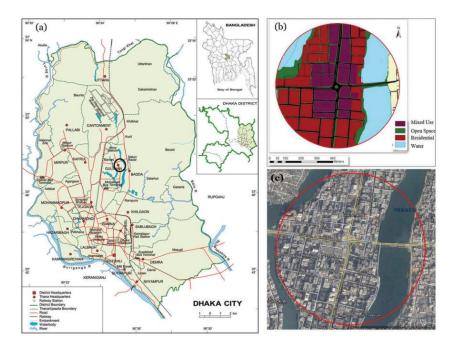
Case study I: Satellite imagery data

European Journal of Remote Sensing

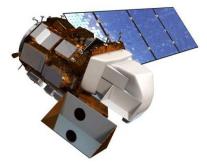
ISSN: (Print) 2279-7254 (Online) Journal homepage: http://www.tandfonline.com/loi/tejr20

The potentials of Sentinel-2 and LandSat-8 data in green infrastructure extraction, using object based image analysis (OBIA) method

S M Labib & Angela Harris

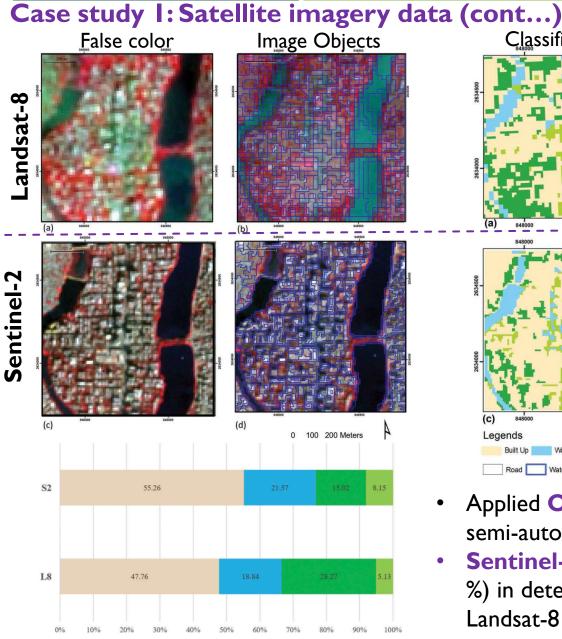


Sentinel-2, 10m, 5 days revisit



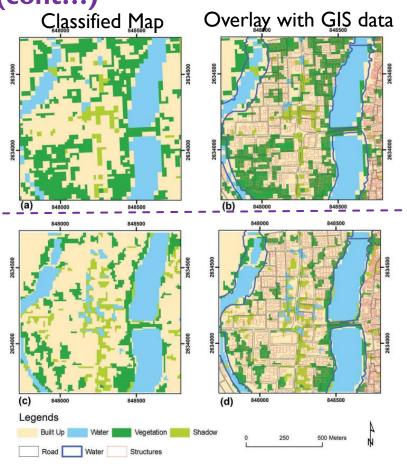
Landsat-8, 30m, 15 days revisit

- Low availability of greenspace data in Dhaka, the existing data are usually outdated.
- New free satellite data from improved sensors are available (Sentinel-2, 10m), Landsat-8 (30m)
- Which **performs better** in extracting greenspace better, what are the issues?



Builtup Water Vegetation Shadow

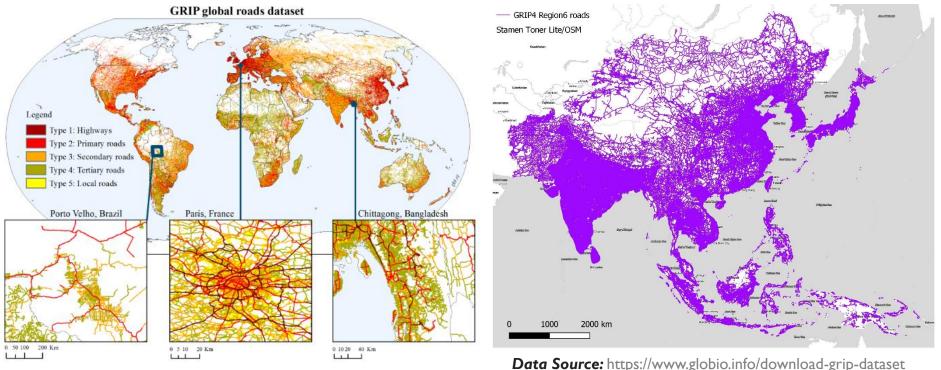
8



- Applied Object based image analysis.A semi-automation process
- Sentinel-2 had greater accuracy (71.24 %) in detecting greenspace, buildings; than Landsat-8 (67.85%)

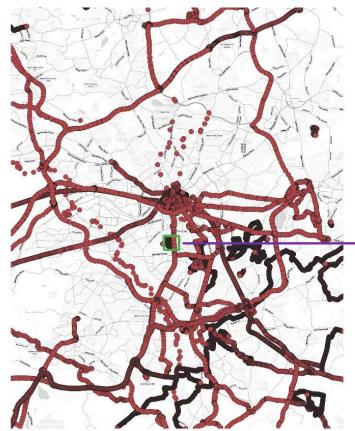
Case study 2: OpenStreetMap data (a pilot test)

- Largest open access crowdsourced Geo-data
- Global coverage of street network, integrated in Global Roads Inventory Project (GRIP) dataset.
- Has anonymized GPS tracks up to 2013, global coverage (>21 GB of GPS points)
- Can such GPS data be useful for understanding urban Park usage?



Source: Meijer et al., (2018)

Case study 2: OpenStreetMap data (a pilot test)

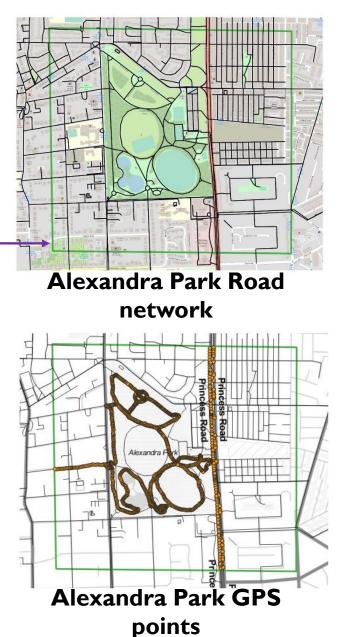


Alex_park
 OSM_GPSmanchester 2013
 OpenStreetMap

0 1 2 km

OSM GPS points Manchester

Data Source: thttps://planet.openstreetmap.org/gps/



10

Case study 2: OpenStreetMap data (a pilot test)

Connecting GPS points using GRASS GIS

Connecting GPS points using SAGA GIS

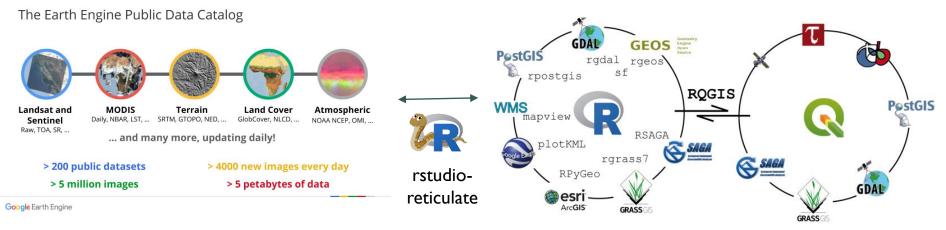
Connecting GPS points using QGIS using paths

11

- Different analytical tools produced different track records.
- Some **paths and access points** are more used than others
- OSM GPS tracks can be used to monitor activities in greenspace
- Issues: (1) No control over how many tracks available, (2) cleaning and processing the data are challenging.

Geospatial Data (summary)

- A lot of open, free, easily accessible data sources.
- Platform such as Google Earth Engine, OpenStreetMap have wide verity of Big Geo-data. GEE for LST: <u>https://code.earthengine.google.com/229c64e5d3ea6c34af203ea2b1aeaeb4?noload=t</u> <u>rue</u>
- Analytical tools such as **QGIS**, **ArcGIS**, **R-packages**, **GDAL**, **GRASS** providing opportunities to analyse Geospatial data with ease.
- Too much data! Need to be careful about using the appropriate data (e.g. resolution), scale and tools based on purpose! (will discuss more in Part-4)



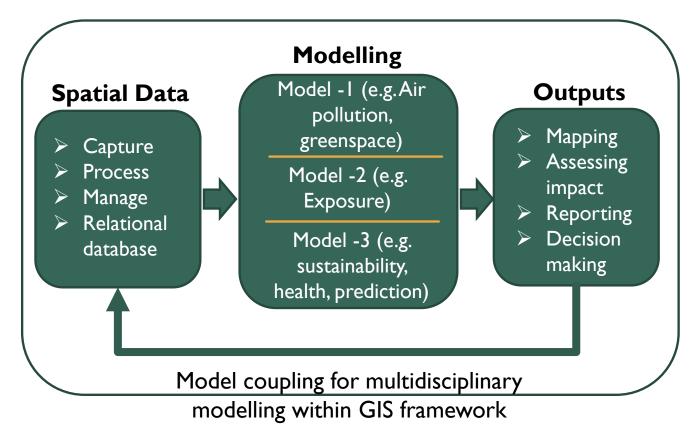
Sources:

- <u>https://geohackweek.github.io/GoogleEarthEngine/01-introduction</u>
- <u>https://philippgaertner.github.io/2019/12/earth-engine-rstudio-reticulate/</u>

Source: Muenchow et al., (2017)

Part -3: Examples of Geospatial model coupling

- What all these Geospatial data, and tools can do in terms of decision making?
- Geospatial modelling provides the opportunity to **integrate multiple models** (e.g., earth system model, pollution) together.
- A multidisciplinary modelling approach.



Example study I: Modelling transportation sustainability

Research article

Carbon dioxide emission and bio-capacity indexing for transportation activities: A methodological development in determining the sustainability of vehicular transportation systems

S.M. Labib^{a,*}, Meher Nigar Neema^b, Zahidur Rahaman^c, Shahadath Hossain Patwary^d, Shahadat Hossain Shakil^e

a School of Environment, Education and Development (SEED), University of Manchester, Arthur Lewis Building (1st Floor), Oxford Road, Manchester, M13 9PL, UK

^b Department of Urban and Regional Planning, Bangladesh University of Engineering and Technology (BUET), Bangladesh

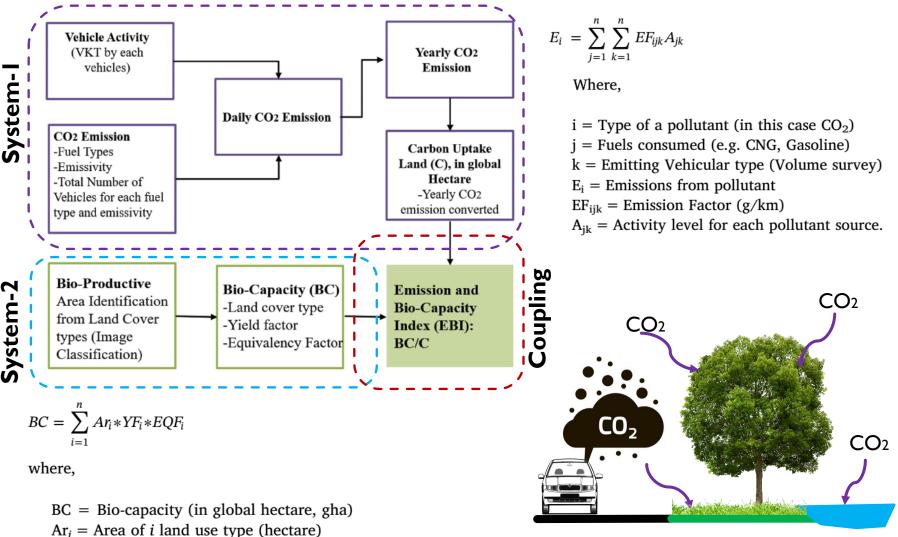
^e Ministry of Law, Justice and Parliamentary Affairs, Government of Bangladesh, Bangladesh

^d Urban Planner, Sheltech (Pvt.) Ltd., Bangladesh

e Economic Growth Office, USAID. U.S. Agency for International Development, American Embassy, Madani Avenue, Dhaka, 1212, Bangladesh

- Transport is a major **determinant of global carbon emission**, and It is also a major source of air pollution and related health impact (Woodcock et al., 2009).
- Traffic related carbon emissions correlate with local available bio-capacity of carbon sequestration.
- Can we combine two components (1) traffic carbon emission, and (2) local bio-productivity to come up a sustainability rating tool?

Example study I: Modelling transportation sustainability (Cont...)

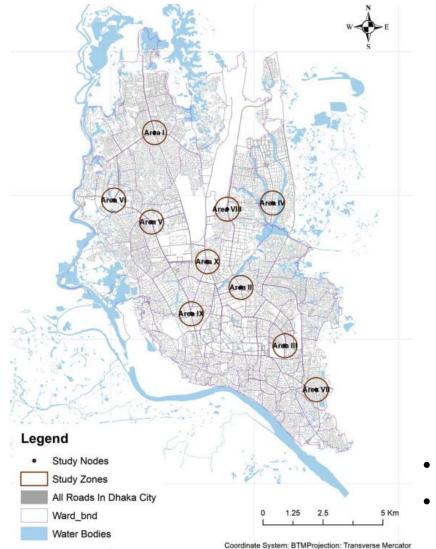


 $YF_i = Yield factor i type (needale)$ $YF_i = Yield factor i type land use type (ratio of national yield)$

world average yield)

 $EQF_i = Equivalency$ factor for *i* type land use type

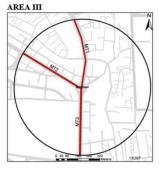
Example study I: Modelling transportation sustainability (Cont...)



- Ten studied nodes
- Critical locations on the transport network.

Example study I: Modelling transportation sustainability (Cont...)

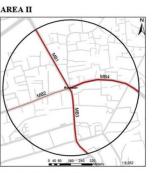
(a) Carbon dioxide emission tone 6.82/day



(c) Carbon dioxide emission tone 11.03 /day

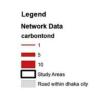
(e) Carbon dioxide emission tone 12.45/day

Spatially explicit estimated CO₂ emission



(b) Carbon dioxide emission tone 8.57 /day

(d) Carbon dioxide emission tone 12.15/day

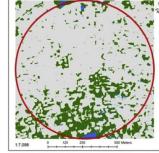


Coordinate System: WGS 1984 UTM Zone 46N Projection: Transverse Mercator Datum: WGS 1984 Units: Meter

(a); Built-up: 55.8; Vege: 22.5; Water: 0.15 hectare (h)

(c); Built-up: 57.9 Vege: 16.8; Water: 3.7(he)

(e); Built-up: 67.2; Vege: 11.1; Water: 0.2 (he)



Mog-bazaar (Area II) Land covers

(b); Built-up: 62.4; Vege: 14.9; Water: 0.94(he)

(d); Built-up: 49.7; Vege: 11.1; Water: 17.6 (he)

Legend

Land Use Types

Coordinate System: WGS 1984 UTM Zone 46N Projection: Transverse Mercator Datum: WGS 1984 Units: Meter

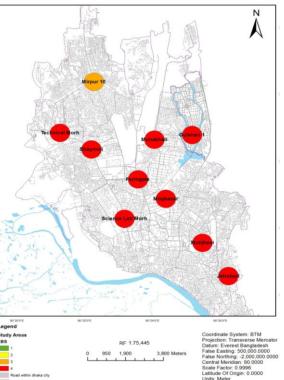
Remote sensing based land use classification

Example study I: Modelling transportation sustainability (Cont...)

Table 5

Emission and bio-capacity Index and Score values for each AOI.

Area	Carbon Uptake Land (gha)	Bio-capacity Area (gha)	EBI	EBS	Color Code
Area I (Mirpur 10)	785.20	269.43	0.343	3	Orange
Area II (Mog bazaar)	987.08	298.06	0.302	4	Red
Area III (Motijheel)	1269.36	278.20	0.219	4	Red
Area IV (Gulshan 1)	1398.43	242.60	0.173	4	Red
Area V (Shymoli)	1432.89	233.91	0.163	4	Red
Area VI (Technical	1477.91	217.92	0.147	4	Red
Morh)					
Area VII (Jatrabari)	1779.99	335.08	0.188	4	Red
Area VIII (Mohakhali)	1868.61	317.41	0.170	4	Red
Area IX (Science lab)	2363.18	285.57	0.121	4	Red
Area X (Farm gate)	2440.20	289.00	0.118	4	Red



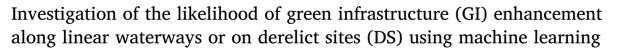
- Emission Bio-capacity Index (EBI) = Carbon Uptake land / Bio-capacity
- Values over One (1) indicate full sequestration of CO2 with the local bio-capacity.
 Expressed in four color rating; Red, Orange, Yellow, Green.
- 9 nodes indicated rating: **"Red"**, implying the CO₂ emission is beyond the capacity to local bio-productive areas to offset the impact.
- **Main reasons**: Increased motorized traffic volume, poor signal system, low facilitation for non-motorized vehicles, and overall low availability of greenspace.

Example study 2: Modelling Green infrastructure using ML

Contents lists available at ScienceDirect

Environmental Modelling & Software

journal homepage: www.elsevier.com/locate/envsoft

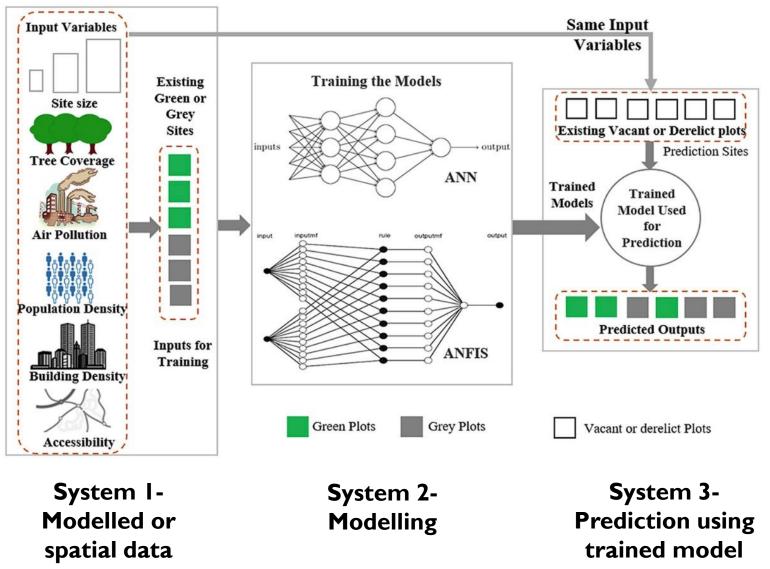


S.M. Labib

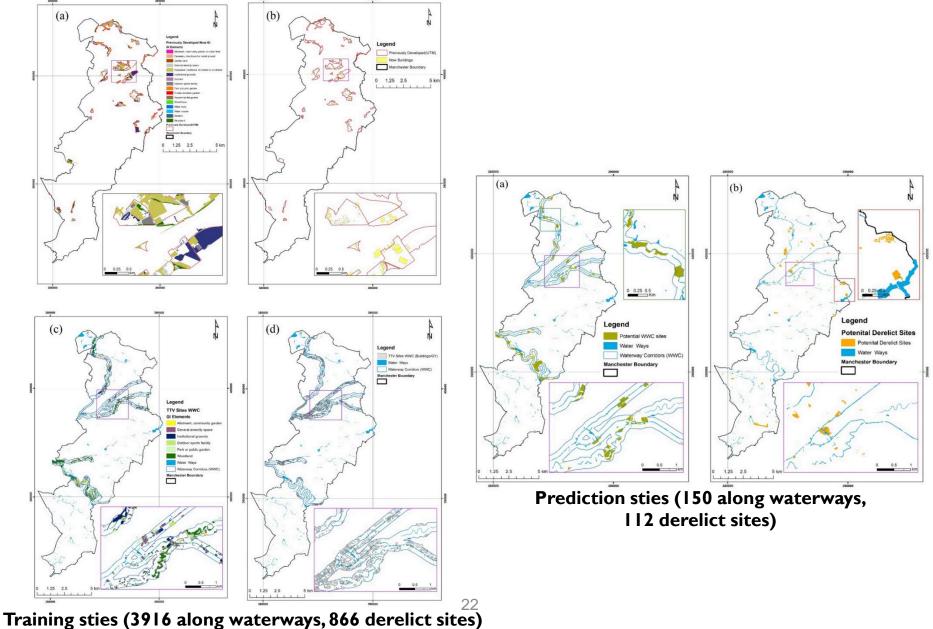
School of Environment, Education and Development (SEED), University of Manchester, Arthur Lewis Building (1st Floor); Oxford Road; Manchester; M13 9PL, UK

- **Green Infrastructure** (e.g., greenspace, blue space) is associated with ecosystem services and health in urban areas (Tzoulas et al., 2007).
- Increased presser on urban land use resulted in loss of GI in cities.
- Can we model what would be **future scenarios of GI** (along waterways or existing derelict sites) based on previous trends, applying machine learning models?
- Can we compare ML models with traditional regression based models (i.e., logistic regression)?

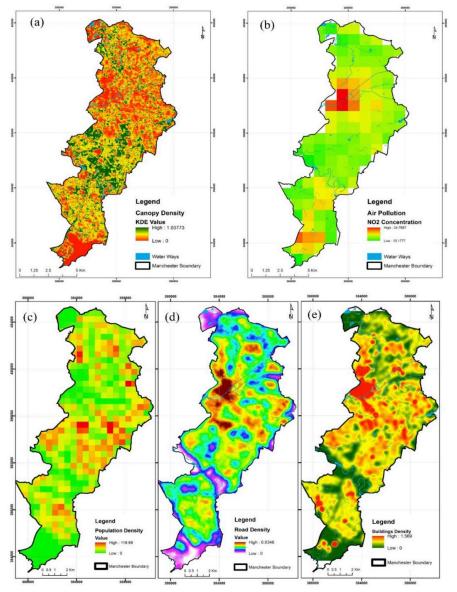
Example study 2: Modelling Green infrastructure using ML (Cont...)



Example study 2: Modelling_Green infrastructure using ML (Cont...)



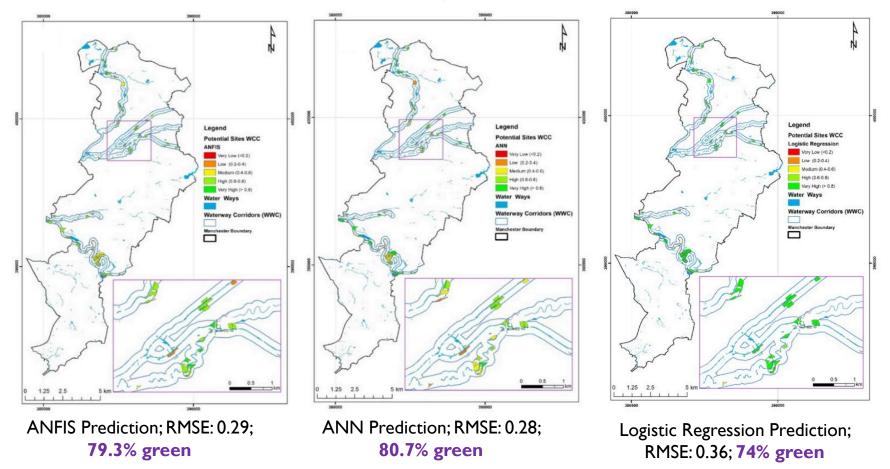
Example study 2: Modelling Green infrastructure using ML (Cont...)



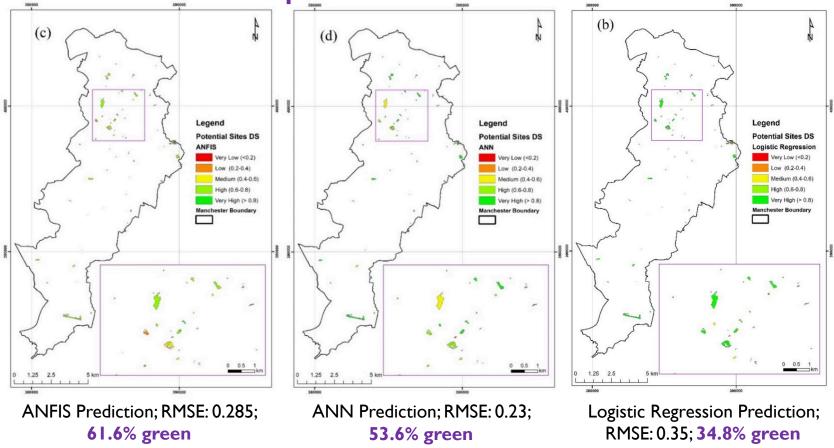
Input data from different spatial data sources, and modelled NO2 data

Example study 2: Modelling Green infrastructure using ML (Cont...)

Prediction for Waterway corridor plots



Prediction for Derelict plots



- **Derelict sites** are more **likely to become grey areas/buildings**, where water ways corridors plots are more likely to remain or become green areas.
- ML models unable to explain the importance or significance of the input variables
- Logistic regression models indicated, site size, population density and air pollution are significantly associated with green transformation likelihood.

Geospatial Model (coupling summary)

- Modelling approaches are transferable; can be applied in different studies, such as built environment- health, air pollution-health studies
- Different spatial and non-spatial data can be integrated within the modelling environment.
- Emerging algorithms are being introduced/integrated frequently.

Part -4: Spatial dimensions of greenspace and health researchcurrent practice

Contents lists available at ScienceDirect

Environmental Research

journal homepage: www.elsevier.com/locate/envres

Review article

Spatial dimensions of the influence of urban green-blue spaces on human health: A systematic review

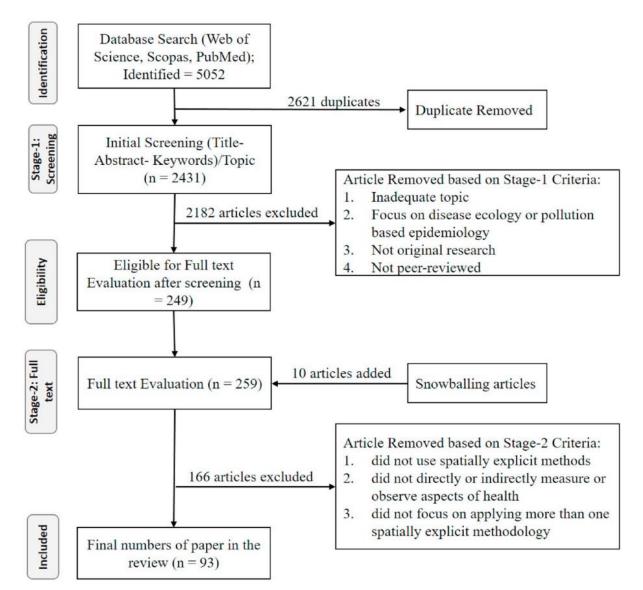
environmental

S.M. Labib*, Sarah Lindley, Jonny J. Huck

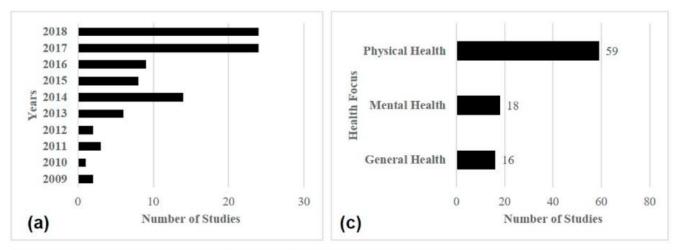
Department of Geography, School of Environment, Education and Development (SEED), University of Manchester, Arthur Lewis Building (1st Floor), Oxford Road, Manchester, M13 9PL, UK

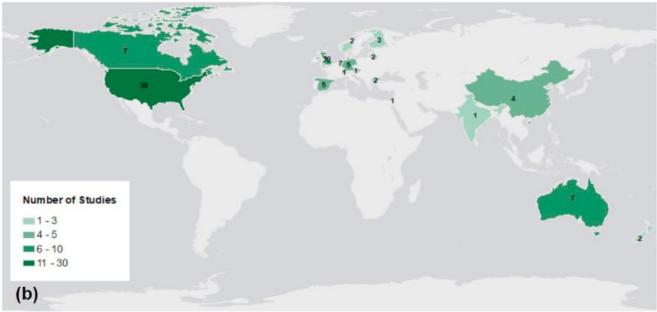
- identify the different data, scales and geospatial methods utilised in studying greenspace and its relation to human health in urban areas;
- investigate how results vary (e.g., significant vs insignificant, positive vs negative) according to the type of association between greenspace and health indicators and their relation to spatial data and methods; and
- identify the limitations and prospects of spatial data and analytics in representing and associating greenspace and human health.

doi: https://doi.org/10.1016/j.envres.2019.108869



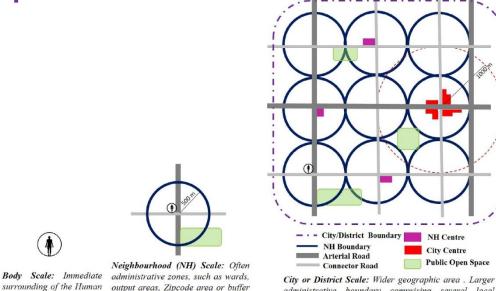
General characteristics of the studies



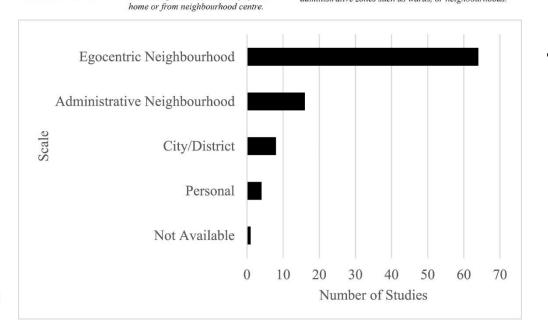


Spatial Scale

body (e.g. 10-100 m)



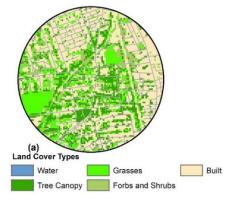
administrative boundary comprising several local administrative zones such as wards, or neighbourhoods.

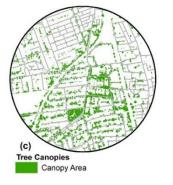


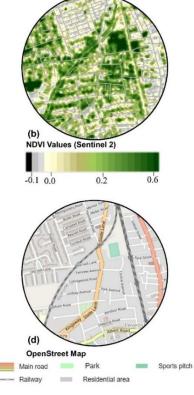
based (e.g. 500m) boundary from

- Commonly used scales: **body**, neighbourhood and **City/districts**
- Neighborhood: (1) egocentric (e.g., a buffer around the home location) or (2) allocentric (e.g., using a pre-defned administrative unit)
- Majority of the studies focused on ego-centric **neighborhood**, applying different buffer distances (e.g., 400, 500, 800 m)

Commonly used greenspace metrics





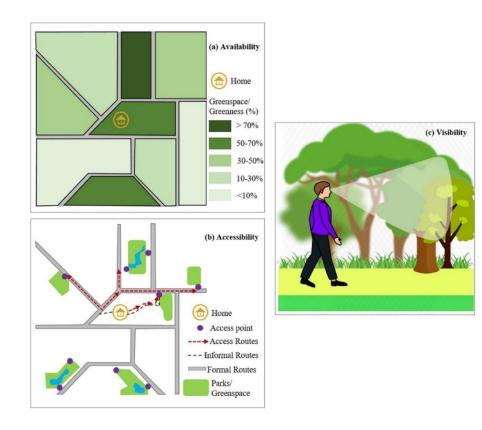


(e) Google Street View 360 Degree Image Greeneries

© Crown copyright and database right (2018)

- Commonly used Greenspace metrics: Land use land cover (n =47), NDVI/EVI/SAVI (n = 36), Canopy coverage (n = 5), Street view images (n = 3), 3D viewshed (n = 3).
- Land use and Land cover data often collected at large spatial scale (e.g., 1:100,000); CORINE, Urban Atlas data (minimum greenspace size 25ha).
- NDVI or satellite image indices often are estimated from Low spatial resolution satellite, mostly Landsat (30m), and MODIS (250m).
- Street view data are emerging, only available along streets.

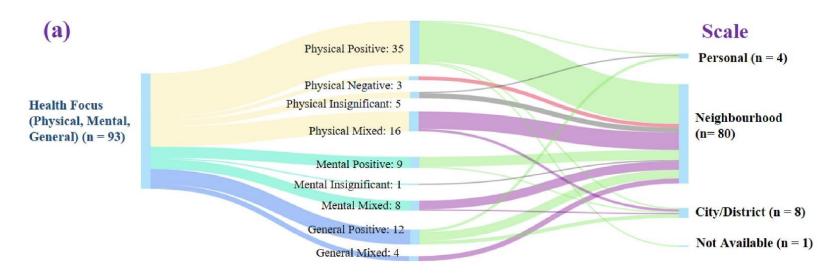
Spatially explicit greenspace exposure assessment



- Availability of greenspace or greenness in different neighbourhoods (e.g., percentage, numbers, mean NDVI, and area/size). Most common (n = 75).
- Accessibility to greenspace from home (e.g., numbers of accessible parcels, distance to parcels) (n = 48). Measured using both shortest distance, and fixed distance (e.g., 400m).
- Visibility of greenspace while travelling or around the home. Least studied (n = 6).
- Most studies use proximity, and overly functions in ArcGIS/QGIS.

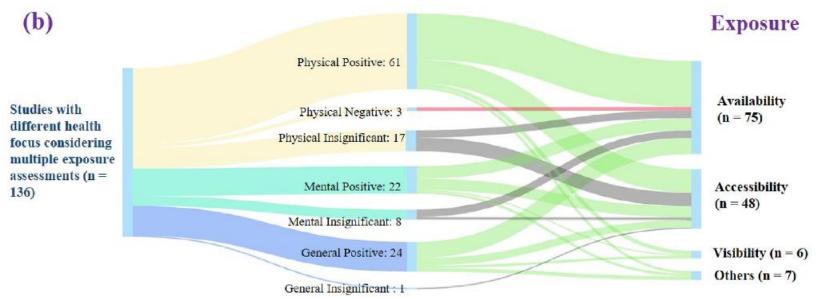
Analytical approaches and key results

- A mix of **subjective** (e.g., self reported, GHQ12, SF36) and **objective** (e.g., anthropometric information, GPS tracking) health indicators (e.g., BMI, MVPA).
- Most studies based on **statistical modelling** (e.g., logistic, linear regressions) and correlation analysis. **Very few applied spatial models** (e.g., regression with lag)



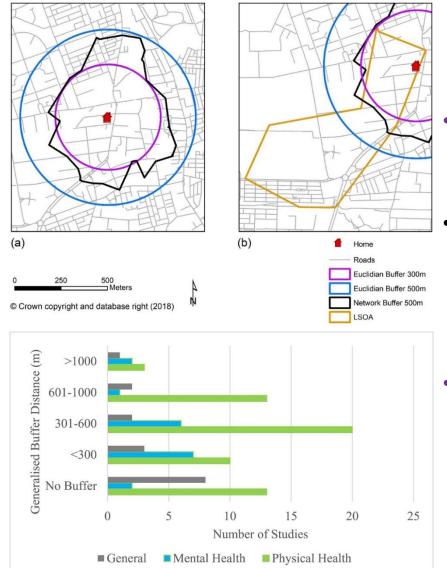
- Majority of the studies found positive associations at each scale. Mixed or insignificant associations also observed at all scales.
- Neighbourhood scale has more variations in study results, as it is most commonly used, and there are a lot of variations in conceptualising neighbourhood (e.g., different buffer distances).

Analytical approaches and key results (Cont...)



- Majority of the studies found positive associations between health greenspace exposure.
- Mixed associations and insignificant associations observed depending on how the exposure measured. Such as availability within 400m vs 1600m; the resolution of spatial data (MODIS vs. Landsat); shortest distance vs. fixed distance.
- All visibility exposure studies found significant positive associations.
- Absence of integrated approach of modelling exposure. Depends on different pathways.
 35

#Issue-I Scale of analysis, distances, and MAUP



Spatial unit of aggregation and analysis is a major concern. It influences both measurements and associations.

- Different buffering approaches (e.g. Euclidian, Network), and administrative units produced different exposure areas, and spatial aggregation of model inputs.
- Physical health focus studies usually use larger distance than mental health.

٠

#Issue-I Scale of analysis, distances, and MAUP (cont...)

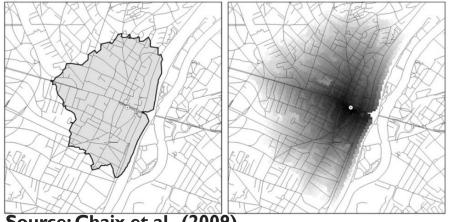
Effects of Aggregation										
a.				b).		с.			
2	4	6	1		3	3.5				
3	4	3	5		4.5	4		3.75	3.75	
1	5	4	2		3	3		2.75	2.75	
5	4	5	4		4.5	4.5		3.75	3.75	
$\overline{x} = 3.75$ $\delta^2 = 2.60$					$\overline{x} = 3.75$ $\delta^2 = 0.50$			$\overline{x} = 3.75$ $\delta^2 = 0.00$		

Effects of Zoning Systems											
	C	l.			e	2.	-		f.		
2.5	5.0	4.5	3.0		4.75	4.5	3.0		4.0 1.0		
				2.75					4.0 3.67		
3.0	4.5	4.5 3.0	4.5	3.0							
		3.75 0.93			$\bar{x} = 3.75$ $\delta^2 = 1.04$				$\bar{x} = 3.17$ $\delta^2 = 2.11$		
	-	0.25	•		v –	1.0-	r		0 = 2.11		

Source: Dark and Bram, (2007)

- Varying distances, spatial units, and buffering approaches result in **Modifiable Areal Unit problem- MAUP** (scale effect/ aggregation, zone effect).
- Aggregating into larger spatial scale reduce variance, cause inconsistency in the model.
- Studies used larger buffers to measure greenspace exposure usually found significance associations, but effect sizes become inconsistent, as covariance among variables affected.
- Zoning of the exposure areas also effect the variance, and hence influence the associations.

#Issue-I Scale of analysis, distances, and MAUP (cont...)



Source: Chaix et al., (2009)

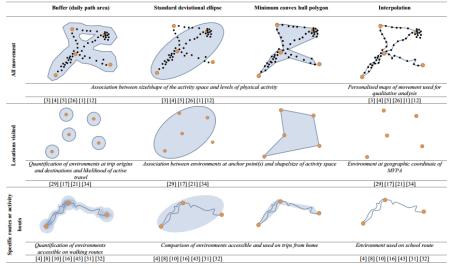


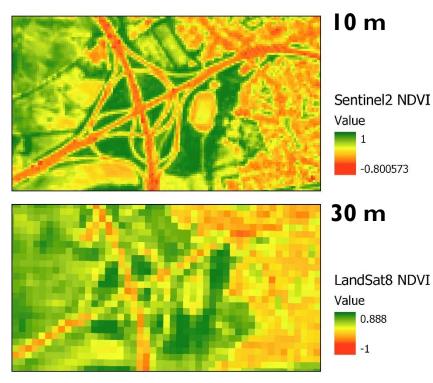
Fig. 2. Methods used to delineate activity spaces with descriptions of example applications.
Achor point (for example: home/work/school/sports club location)

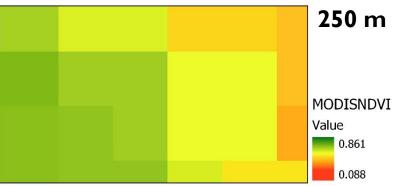
Some potential solutions:

- Select an unit of analysis, or buffer distance that do not cause over aggregation of exposure or health variables. Need sensitivity analysis. [My upcoming paper detailed with this issue]
- Use a weighted/fuzzy distance approach, when do not know what distances more appropriate (Chaix et al., 2009), for which health focus.
- Use activity space to determine more realistic exposure area. Smith et al., (2019) detailed some sate-ofthe art approaches in activity space delineation.

Source: Smith et al., (2019)

#Issue-2 Resolution of images and data capturing scale



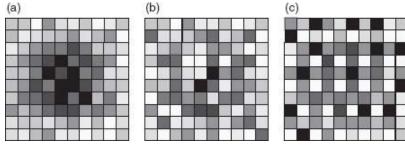


- Resolution of the metrics of greenness can cause **misclassification of greenness**, and result in under or over estimation of exposure.
- Low spatial resolution could also **result in insignificant/ mixed** association with health outcomes (also Reid et al., 2018).
- Scale of analysis/ aggregation area sensitive to data resolution.

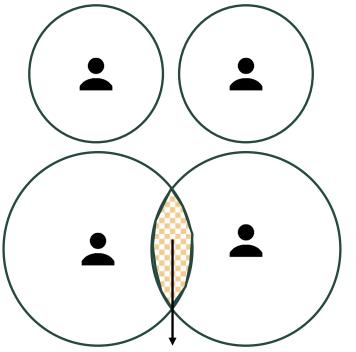
Some potential solutions:

- Use the best resolution data available, currently Sentinel-2 is the better free option (Part 2, case study 1)
- Select an aggregation unit/ exposure area/scale that does not over aggregate already misclassified exposure. [My upcoming paper investigated this for satellite images]

#Issue-3 Spatial autocorrelation



(a) Positive spatial autocorrelation. (b) Spatial randomness. (c) Negative spatial autocorrelation (Source: Fortin and Dale, 2009)



Larger buffer distances produce overlapping exposure areas, add autocorrelation

- All spatial data usually have some autocorrelation, mostly positive.
- Autocorrelation among observations can be introduced with overlapping exposure areas.
- Auto-correlated variables usually has less information, reduced effective sample size, and vulnerable to Type-I error, when using in a non-spatial modelling approach (e.g. linear regression).
- Spatial autocorrelation observed in few greenspace and health studies, most studies did not checked.

Some potential solutions:

- Test autocorrelation (e.g., Moran 'I)
- Apply spatial smoothing, or randomization.
- Apply spatially explicit regression (e.g., Geographically weighted regression, Bayesian spatial model), and test application of ML algorithms (Part 3, example 2).

Take home message

Part-l

- Spatial data and methods are integrated in environmental epidemiological studies
- Environmental exposure assessment frequently dependent on spatial methods.

Part-2

- A lot of spatial data available, can be used in different epidemiological studies.
- Free, open and easy access to big-spatial data via platforms like Google earth engine, OpenstreetMap. A lot of open access analytical tools available.

Part-3

- Spatial modelling framework provide opportunities to integrate multiple data, and models
- Adopting new algorithms allowing robust modelling
- Transferable modelling approach

Part-4

- Applying spatial data, methods *require careful attention* in selecting data types, scale of analysis, and methods.
- Scale, resolution, MAUP, and autocorrelation can influence the associations among variables.
- Fine resolution data, *appropriate scale, and spatially explicit modelling* should be used environmental epidemiological studies.

Thank you... Any Questions!

sm.labib@manchester.ac.uk

References

Barton, H. and Grant, M., 2006. A health map for the local human habitat. The journal for the royal society for the promotion of health, 126(6), pp.252-253.

Chaix, B., Merlo, J., Evans, D., Leal, C. and Havard, S., 2009. Neighbourhoods in eco-epidemiologic research: delimiting personal exposure areas. A response to Riva, Gauvin, Apparicio and Brodeur. *Social science & medicine*, 69(9), pp.1306-1310.

Dark, S.J. and Bram, D., 2007. The modifiable areal unit problem (MAUP) in physical geography. *Progress in Physical Geography*, 31(5), pp.471-479.

Dennis, M., Barlow, D., Cavan, G., Cook, P.A., Gilchrist, A., Handley, J., James, P., Thompson, J., Tzoulas, K., Wheater, C.P. and Lindley, S., 2018. Mapping urban green infrastructure: A novel landscape-based approach to incorporating land use and land cover in the mapping of human-dominated systems. *Land*, 7(1), p.17.

Fortin, M.J. and Dale, M.R., 2009. Spatial autocorrelation. The SAGE handbook of spatial analysis, pp.89-103.

Labib, S.M., Lindley, S. and Huck, J.J., 2020. Spatial dimensions of the influence of urban green-blue spaces on human health: A systematic review. *Environmental research*, p.108869. doi: <u>https://doi.org/10.1016/j.envres.2019.108869</u>

Labib, S.M., 2019. Investigation of the likelihood of green infrastructure (GI) enhancement along linear waterways or on derelict sites (DS) using machine learning. *Environmental Modelling & Software*, 118, pp.146-165. doi: <u>https://doi.org/10.1016/j.envsoft.2019.05.006</u>

Labib, S.M. and Harris, A., 2018. The potentials of Sentinel-2 and LandSat-8 data in green infrastructure extraction, using object based image analysis (OBIA) method. *European Journal of Remote Sensing*, 51(1), pp.231-240. doi: https://doi.org/10.1080/22797254.2017.1419441

Labib, S.M., Neema, M.N., Rahaman, Z., Patwary, S.H. and Shakil, S.H., 2018. Carbon dioxide emission and bio-capacity indexing for transportation activities: A methodological development in determining the sustainability of vehicular transportation systems. *Journal of environmental management*, 223, pp.57-73. doi: https://doi.org/10.1016/j.jenvman.2018.06.010

Lindley, S.J., Cook, P.A., Dennis, M. and Gilchrist, A., 2019. Biodiversity, Physical Health and Climate Change: A Synthesis of Recent Evidence. In *Biodiversity and Health in the Face of Climate Change* (pp. 17-46). Springer, Cham.

Markevych, I., Schoierer, J., Hartig, T., Chudnovsky, A., Hystad, P., Dzhambov, A.M., De Vries, S., Triguero-Mas, M., Brauer, M., Nieuwenhuijsen, M.J. and Lupp, G., 2017. Exploring pathways linking greenspace to health: Theoretical and methodological guidance. *Environmental research*, *158*, pp.301-317.

Meijer, J.R., Huijbregts, M.A., Schotten, K.C. and Schipper, A.M., 2018. Global patterns of current and future road infrastructure. *Environmental Research Letters*, 13(6), p.064006. doi: <u>https://doi.org/10.1088/1748-9326/aabd42</u>

References (cont...)

Muenchow, J., Schratz, P. and Brenning, A., 2017. RQGIS: Integrating R with QGIS for Statistical Geocomputing. *R Journal*, 9(2). doi: <u>https://doi.org/10.32614/RJ-2017-067</u>

Nieuwenhuijsen, M.J., 2009. Exposure assessment in occupational and environmental epidemiology. Oxford University Press,.

Reid, C.E., Kubzansky, L.D., Li, J., Shmool, J.L. and Clougherty, J.E., 2018. It's not easy assessing greenness: A comparison of NDVI datasets and neighborhood types and their associations with self-rated health in New York City. *Health & place*, *54*, pp.92-101.

Smith, L., Foley, L. and Panter, J., 2019. Activity spaces in studies of the environment and physical activity: A review and synthesis of implications for causality. *Health & place*, p.102113.

Tzoulas, K., Korpela, K., Venn, S., Yli-Pelkonen, V., Kaźmierczak, A., Niemela, J. and James, P., 2007. Promoting ecosystem and human health in urban areas using Green Infrastructure: A literature review. *Landscape and urban planning*, 81(3), pp.167-178.

Woodcock, J., Edwards, P., Tonne, C., Armstrong, B.G., Ashiru, O., Banister, D., Beevers, S., Chalabi, Z., Chowdhury, Z., Cohen, A. and Franco, O.H., 2009. Public health benefits of strategies to reduce greenhouse-gas emissions: urban land transport. *The Lancet*, 374(9705), pp.1930-1943. doi: <u>https://doi.org/10.1016/S0140-6736(09)61714-1</u>