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Who Am I?  

I am Labib. 

From Bangladesh, travelled from 

Manchester. 
 

My Academic Journey: 

 BSc in Urban and Regional Planning (2014), 

Bangladesh University of Engineering and 

Technology.  

 MSc in Geographical Information Science (2017), 

University of Manchester. 

 PhD in Physical Geography (2017- 2020, 

submission), University of Manchester.  

 

Research Interests: 

Geographic Information Science, 

Remote Sensing, 

Green Infrastructure,  

Transportation planning, and  

Environmental Epidemiology.  

Research Groups:  
Mapping: Culture and Geographical 

Information Science (MCGIS); 

Environmental Processes (EPRG) 1 



Content & Outline 

• Brief Overview of geospatial data and methods in 

epidemiology (5 min) 

 - Historic example and now  

 - Geospatial approaches in practice 

  Exposure assessment 

• Geospatial Data and methods case studies (10 min) 

 -  Airborne imagery data,  

 - OpenStreeMap data,  

 -  Volunteer GIS data 

• Examples of model coupling and their applications (10 min) 

 -  Applying in transportation sustainability  

 -  Combining machine learning models with spatial data 

• Spatial dimensions in greenspace and health research- a 

systematic review (20 min) 

 - Scale 

 - Exposure assessment (data, methods) 

 - The buffering issue 

 - MAUP and spatial autocorrelation  

 

• Q-A? (15 min) 

• References 

Part-1 

Part-2 

Part-3 

Part-4 
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Part -1: Brief Overview of 

geospatial data and 

methods in epidemiology 
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1854 Broad Street cholera outbreak 

• What is the average distance from the contaminated pump to the surrounding 

locations?  

• What is there now? http://tiny.cc/9j17jz   

 
Data Source: http://blog.rtwilson.com/john-snows-cholera-data-in-more-formats/  

Full Story: https://youtu.be/lNjrAXGRda4   

Past and present… 

Map 1854 2020 
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Geospatial approaches in practice 

• Environmental Factors:  Pollution sources (e.g., air, water pollution), natural 

environment, built environment. Spatial Data dominance! 

• External influence measurement: Exposure assessment- a function of location 

(proximity) and time (Nieuwenhuijsen, 2009). Spatial Methods dominance!  

Satellite images 

monitoring 

GIS Data 
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Greenspace Greater Manchester, 

Dennis et al., (2018) 

NO2 Pollution Greater London, LAEI, 

2016 

Lindley et al., (2019); 

Barton and Grant, (2006) 
Exposure (Location, Proximity, Time) 5 



Part -2: Geospatial 

Data (case studies)  
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Geospatial Data (case studies) 

Case study 1: Satellite imagery data 

• Low availability of greenspace data in 

Dhaka, the existing data are usually 

outdated.  

• New free satellite data from improved 

sensors are available (Sentinel-2, 10m), 

Landsat-8 (30m) 

• Which performs better in extracting 

greenspace better, what are the issues? 

Sentinel-2, 10m, 5 days revisit 

Landsat-8, 30m, 15 days revisit 
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• Applied Object based image analysis. A 

semi-automation process 

• Sentinel-2 had greater accuracy (71.24  

%) in detecting greenspace, buildings; than 

Landsat-8 (67.85%) 

False color Image Objects Classified Map Overlay with GIS data 
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Case study 1: Satellite imagery data (cont…) 

Geospatial Data (case studies) 



Case study 2: OpenStreetMap data (a pilot test) 

Geospatial Data (case studies) 

• Largest open access crowdsourced Geo-data 

• Global coverage of street network, integrated in Global Roads Inventory Project 

(GRIP) dataset. 

• Has anonymized GPS tracks up to 2013, global coverage (>21 GB of GPS points) 

• Can such GPS data be useful for understanding urban Park usage? 

Source: Meijer et al., (2018) 
Data Source: https://www.globio.info/download-grip-dataset 
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Case study 2: OpenStreetMap data (a pilot test) 

OSM GPS points Manchester 

Alexandra Park Road 

network 

Alexandra Park GPS 

points 
Data Source: thttps://planet.openstreetmap.org/gps/ 
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Geospatial Data (case studies) 

https://www.globio.info/download-grip-dataset
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Case study 2: OpenStreetMap data (a pilot test) 
Connecting GPS points using GRASS GIS Connecting GPS points using SAGA GIS 

Connecting GPS points using QGIS using paths 

Common access points 

• Different analytical tools produced different 

track records. 

• Some paths and access points are more 

used than others 

• OSM GPS tracks can be used to monitor 

activities in greenspace 

• Issues: (1) No control over how many 

tracks available, (2) cleaning and 

processing the data are challenging. 
11 

Geospatial Data (case studies) 



Geospatial Data (summary) 

• A lot of open, free, easily accessible data sources.  

• Platform such as Google Earth Engine, OpenStreetMap have wide verity of Big 

Geo-data. GEE for LST: 

https://code.earthengine.google.com/229c64e5d3ea6c34af203ea2b1aeaeb4?noload=t

rue 

• Analytical tools such as QGIS, ArcGIS, R-packages, GDAL, GRASS providing 

opportunities to analyse Geospatial data with ease.  

• Too much data! Need to be careful about using the appropriate data (e.g. 

resolution), scale and tools based on purpose! (will discuss more in Part-4) 

Sources: 

• https://geohackweek.github.io/GoogleEarthEngine/01-introduction 

• https://philippgaertner.github.io/2019/12/earth-engine-rstudio-reticulate/ 

Source: Muenchow et al., (2017) 
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Part -3: Examples of 

Geospatial model 

coupling 
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Geospatial Model coupling 

• What all these Geospatial data, and tools can do in terms of decision making? 

• Geospatial modelling provides the opportunity to integrate multiple models 

(e.g., earth system model, pollution) together.  

• A multidisciplinary modelling approach. 

Spatial Data 

 Capture 

 Process 

 Manage 

 Relational 

database 

Model -1 (e.g. Air 

pollution, 

greenspace) 

Modelling 

Outputs 

Model -2 (e.g. 

Exposure) 

Model -3 (e.g. 

sustainability, 

health, prediction) 

 Mapping 

 Assessing 

impact 

 Reporting 

 Decision 

making 

Model coupling for multidisciplinary 

modelling within GIS framework 
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Geospatial Model coupling 

15 

Example study1: Modelling transportation sustainability 

• Transport is a major determinant of global carbon emission, and It is also a 

major source of air pollution and related health impact (Woodcock et al., 2009).  

 

• Traffic related carbon emissions correlate with local available bio-capacity of carbon 

sequestration. 

 

• Can we combine two components (1) traffic carbon emission, and (2) local 

bio-productivity to come up a sustainability rating tool?  



Example study1: Modelling transportation sustainability (Cont…) 

Geospatial Model coupling 
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Geospatial Model coupling 

• Ten studied nodes 

• Critical locations on the 

transport network.  

17 

Example study1: Modelling transportation sustainability (Cont…) 



Geospatial Model coupling 

Spatially explicit estimated CO2 

emission 

Remote sensing based land use 

classification 18 

Example study1: Modelling transportation sustainability (Cont…) 



Geospatial Model coupling 

• Emission Bio-capacity Index (EBI) = Carbon Uptake land / Bio-capacity 

• Values over One (1) indicate full sequestration of CO2 with the local bio-capacity. 

Expressed in four color rating; Red, Orange, Yellow, Green.  

• 9 nodes indicated rating: “Red”, implying the CO2 emission is beyond the capacity 

to local bio-productive areas to offset the impact. 

• Main reasons: Increased motorized traffic volume, poor signal system, low 

facilitation for non-motorized vehicles, and overall low availability of greenspace.  19 

Example study1: Modelling transportation sustainability (Cont…) 



Example study 2: Modelling Green infrastructure using ML 

Geospatial Model coupling 

• Green Infrastructure (e.g., greenspace, blue space) is associated with ecosystem 

services and health in urban areas (Tzoulas et al., 2007). 

• Increased presser on urban land use resulted in loss of GI in cities. 

• Can we model what would be future scenarios of GI (along waterways or 

existing derelict sites) based on previous trends, applying machine learning models? 

• Can we compare ML models with traditional regression based models (i.e., 

logistic regression)?  

20 



Geospatial Model coupling 

Example study 2: Modelling Green infrastructure using ML (Cont…) 

System 1- 

Modelled or 

spatial data 

System 2- 

Modelling 

System 3- 

Prediction using 

trained model 
21 



Geospatial Model coupling 

Training sties (3916 along waterways, 866 derelict sites) 

Prediction sties (150 along waterways, 

112 derelict sites) 
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Example study 2: Modelling Green infrastructure using ML (Cont…) 



Geospatial Model coupling 

Input data from different 

spatial data sources, and 

modelled NO2 data 
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Example study 2: Modelling Green infrastructure using ML (Cont…) 



Geospatial Model coupling 

ANN Prediction; RMSE: 0.28; 

80.7% green 

ANFIS Prediction; RMSE: 0.29; 

79.3% green 
Logistic Regression Prediction; 

RMSE: 0.36; 74% green 

Prediction for Waterway corridor plots 
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Example study 2: Modelling Green infrastructure using ML (Cont…) 



Prediction for Derelict plots 

ANN Prediction; RMSE: 0.23; 

53.6% green 

ANFIS Prediction; RMSE: 0.285; 

61.6% green 

Logistic Regression Prediction; 

RMSE: 0.35; 34.8% green 

Geospatial Model coupling 

25 

• Derelict sites are more likely to become grey areas/buildings, where water 

ways corridors plots are more likely to remain or become green areas. 

• ML models unable to explain the importance or significance of the input 

variables 

• Logistic regression models indicated, site size, population density and air 

pollution are significantly associated with green transformation likelihood. 



Geospatial Model (coupling summary) 

• Modelling approaches are transferable; can be applied in 

different studies, such as built environment- health, air 

pollution-health studies 

• Different spatial and non-spatial data can be integrated 

within the modelling environment. 

• Emerging algorithms are being introduced/integrated 

frequently.  

26 



Part -4: Spatial 

dimensions of greenspace 

and health research- 

current practice 

27 



• identify the different data, scales and geospatial methods utilised in studying 

greenspace and its relation to human health in urban areas; 

• investigate how results vary (e.g., significant vs insignificant, positive vs negative) 

according to the type of association between greenspace and  health indicators and 

their relation to spatial data and methods; and 

• identify the limitations and prospects of spatial data and analytics in 

representing and associating greenspace and human health.  

Spatial Dimensions greenspace & health 

28 doi: https://doi.org/10.1016/j.envres.2019.108869  

https://doi.org/10.1016/j.envres.2019.108869


Spatial Dimensions greenspace & health 

PRISMA 

29 



Spatial Dimensions greenspace & health 

30 

General characteristics of the studies 



Spatial Dimensions greenspace & health 

Spatial Scale 

• Commonly used scales: body, 

neighbourhood and 

City/districts 

• Neighborhood: (1) egocentric 

(e.g., a buffer around the home 

location) or (2) allocentric 

(e.g., using a pre-defned 

administrative unit) 

• Majority of the studies focused 

on ego-centric 

neighborhood, applying 

different buffer distances (e.g., 

400, 500, 800 m) 

31 



Commonly used greenspace metrics 

Spatial Dimensions greenspace & health 

32 

• Commonly used Greenspace metrics: 

Land use land cover (n =47), 

NDVI/EVI/SAVI (n = 36), Canopy 

coverage (n = 5), Street view images (n = 

3), 3D viewshed (n = 3). 

• Land use and Land cover data often 

collected at large spatial scale (e.g., 

1:100,000); CORINE, Urban Atlas data 

(minimum greenspace size 25ha). 

• NDVI or satellite image indices often are 

estimated from Low spatial 

resolution satellite, mostly Landsat 

(30m),  and MODIS (250m). 

• Street view data are emerging, only 

available along streets. 



Spatial Dimensions greenspace & health 

Spatially explicit greenspace exposure assessment 

33 

• Availability of greenspace or greenness 

in different neighbourhoods (e.g., 

percentage, numbers, mean NDVI, and 

area/size). Most common (n = 75). 

• Accessibility to greenspace from home 

(e.g., numbers of accessible parcels, 

distance to parcels) (n = 48). Measured 

using both shortest distance, and fixed 

distance (e.g., 400m). 

• Visibility of greenspace while travelling 

or around the home. Least studied (n 

= 6).  

• Most studies use proximity, and 

overly functions in ArcGIS/QGIS.  



Spatial Dimensions greenspace & health 

Analytical approaches and key results 

34 

• A mix of subjective (e.g., self reported, GHQ12, SF36) and objective (e.g., 

anthropometric information, GPS tracking) health indicators (e.g., BMI, MVPA). 

• Most studies based on statistical modelling (e.g., logistic, linear regressions) and 

correlation analysis. Very few applied spatial models (e.g., regression with lag) 

• Majority of the studies found positive associations at each scale. Mixed or 

insignificant associations also observed at all scales.  

• Neighbourhood scale has more variations in study results, as it is most commonly 

used, and there are a lot of variations in conceptualising neighbourhood (e.g., 

different buffer distances).  



Spatial Dimensions greenspace & health 

35 

Analytical approaches and key results (Cont…) 

• Majority of the studies found positive associations between health greenspace 

exposure.  

• Mixed associations and insignificant associations observed depending on how the 

exposure measured. Such as availability within 400m vs 1600m; the resolution of 

spatial data (MODIS vs. Landsat); shortest distance vs. fixed distance.  

• All visibility exposure studies found significant positive associations.  

• Absence of integrated approach of modelling exposure. Depends on different 

pathways. 



Spatial Dimensions greenspace & health 

#Issue-1 Scale of analysis, distances, and MAUP 

• Spatial unit of aggregation and 

analysis is a major concern. It influences 

both measurements and associations.  

• Different buffering approaches (e.g. 

Euclidian, Network), and administrative 

units produced different exposure 

areas, and spatial aggregation of 

model inputs. 

• Physical health focus studies usually 

use larger distance than mental 

health.  

36 



#Issue-1 Scale of analysis, distances, and MAUP (cont…) 

Spatial Dimensions greenspace & health 

• Varying distances, spatial units, and buffering 

approaches result in Modifiable Areal Unit 

problem- MAUP (scale effect/ aggregation, 

zone effect). 

• Aggregating into larger spatial scale 

reduce variance, cause inconsistency in the 

model.  

• Studies used larger buffers to measure 

greenspace exposure usually found 

significance associations, but effect sizes 

become inconsistent, as covariance among 

variables affected.  

• Zoning of the exposure areas also effect the 

variance, and hence influence the associations.  
Source: Dark and Bram, (2007) 
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Source: Smith et al., (2019) 

Source: Chaix et al., (2009) 

Spatial Dimensions greenspace & health 

Some potential solutions: 

• Select an unit of analysis, or buffer 

distance that do not cause over 

aggregation of exposure or 

health variables. Need sensitivity 

analysis. [My upcoming paper 

detailed with this issue] 

• Use a weighted/fuzzy distance 

approach, when do not know what 

distances more appropriate (Chaix 

et al., 2009), for which health focus. 

• Use activity space to determine 

more realistic exposure area.  Smith 

et al., (2019) detailed some sate-of-

the art approaches in activity space 

delineation. 

38 

#Issue-1 Scale of analysis, distances, and MAUP (cont…) 



#Issue-2 Resolution of images and data capturing scale 

Spatial Dimensions greenspace & health 

10 m 

30 m 

250 m 

• Resolution of the metrics of greenness 

can cause misclassification of 

greenness, and result in under or over 

estimation of exposure. 

• Low spatial resolution could also result 

in insignificant/ mixed association with 

health outcomes (also Reid et al., 2018).  

• Scale of analysis/ aggregation area 

sensitive to data resolution. 

39 

Some potential solutions: 

• Use the best resolution data available, 

currently Sentinel-2 is the better free 

option (Part 2, case study 1) 

• Select an aggregation unit/ exposure 

area/scale that does not over 

aggregate already misclassified 

exposure. [My upcoming paper 

investigated this for satellite images] 



Spatial Dimensions greenspace & health 

#Issue-3 Spatial autocorrelation 

c 

(a) Positive spatial autocorrelation. (b) Spatial 

randomness. (c) Negative spatial autocorrelation 

(Source: Fortin and Dale, 2009) 

• All spatial data usually have some 

autocorrelation, mostly positive. 

• Autocorrelation among observations can 

be introduced with overlapping 

exposure areas. 

• Auto-correlated variables usually has less 

information, reduced effective sample 

size, and vulnerable to Type-1 error, 

when using in a non-spatial modelling 

approach (e.g. linear regression).  

• Spatial autocorrelation observed in few 

greenspace and health studies, most 

studies did not checked. 

Larger buffer distances produce overlapping 

exposure areas, add autocorrelation 

Some potential solutions: 

• Test autocorrelation (e.g., Moran 'I)  

• Apply spatial smoothing, or randomization. 

• Apply spatially explicit regression (e.g., 

Geographically weighted regression, 

Bayesian spatial model), and test application 

of ML algorithms (Part 3, example 2). 40 



Take home message  

Part-1 

• Spatial data and methods are integrated in environmental epidemiological studies 

• Environmental exposure assessment frequently dependent on spatial methods. 

41 

Part-2 

• A lot of spatial data available, can be used in different epidemiological studies. 

• Free, open and easy access to big-spatial data via platforms like Google earth 

engine, OpenstreetMap.  A lot of open access analytical tools available. 

Part-3 

• Spatial modelling framework provide opportunities to integrate multiple data, and 

models 

• Adopting new algorithms allowing robust modelling 

• Transferable modelling approach 

Part-4 

• Applying spatial data, methods require careful attention in selecting data types, 

scale of analysis, and methods.  

• Scale, resolution, MAUP, and autocorrelation can influence the associations 

among variables. 

• Fine resolution data, appropriate scale, and spatially explicit modelling should be 

used environmental epidemiological studies.  



Q-A 

Thank you… 

Any Questions! 

42 
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