

Global data for diabetes and obesity research

Global data for diabetes and obesity research

Host: Nick Wareham, InterConnect Co-ordinator & Director, MRC Epidemiology Unit, University of Cambridge, UK Venue: pre-EASD Munich, 12 September 2016

This project is funded by the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement no 602068.

Programme

14:30	The InterConnect Project
14:45	Applying the InterConnect approach for federated meta-analysis
	 Physical activity in pregnancy and neonatal anthropometric outcomes Fish intake and risk of type 2 diabetes
16.00	Future perspectives
	 Ideas for future research projects Vision and place for InterConnect approach
16:30	Discussion and involvement

Plan

- This talk:
 - Illustrate scientific opportunity
 - Enabling increased understanding differences in risk of diabetes and obesity between populations
 - Introduction to InterConnect approach
- This symposium:
 - Show InterConnect approach works
 - Set up takes some work but doable and producing scientifically interesting results of public health relevance
 - A foundation has been created now build further

Global data for diabetes and obesity research

The InterConnect Project

Nick Wareham InterConnect Co-ordinator, University of Cambridge, UK

This project is funded by the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement no 602068.

Between-population differences in incidence of type 1 diabetes

- High incidence in Finland, Sardinia and other populations
- On-going cohort studies in specific populations investigating interplay between genetic susceptibility and environmental triggers

Between-population differences in type 2 diabetes prevalence

Phase 2: Studying explanations for differences in risk between individuals within-populations

- EPIC-InterAct Nested case-cohort study within EPIC Europe
- Large 455,680 individuals at baseline
- Long follow-up
 - 4 million person years
 - 12,403 incident cases of T2DM
- Stored blood
- Data on diet/physical activity
- Exposure heterogeneity

Design and cohort description of the InterAct Project: an examination of the interaction of genetic and lifestyle factors on the incidence of type 2 diabetes in the EPIC Study

nterAct

The InterAct Consortium

Research groups in 8 countries; 26 centres

Source: Langenberg C et al, Diabetologia 2011

Phase 3: Moving from within-population investigation to the study of between-population differences

How to realise the vision of bringing data together to allow the study of between-population differences in risk

- Find relevant studies globally
- Find out what data the studies have collected
- Find an appropriate way of bringing data together
- Find a way of interpreting different forms of data that are brought together

Barriers to cross-cohort analyses

InterConnect

- Goal to optimise use of existing data to enable crosscohort analyses
 - Individual participant meta-analysis of pooled data from separate cohorts is analytically desirable
 - InterConnect aims to enable a solution without physical pooling of data by TAKING THE ANALYSIS TO THE DATA

InterConnect is different...

- Goal is to enable others
- Creating an approach to optimise the use of existing data for cross-cohort analyses
 - currently constrained by limitations of conventional data sharing and approaches to meta-analysis

Creating change requires many actors

- Researchers to see need, think useful, demonstrate value
- Stakeholders who are users of research evidence create pull
- Funders infrastructure, incentives for re-use of data

InterConnect: A bridging function

InterConnect: A bridging function

TOOLS & INFRASTRUCTURE

RESEARCH USE: APPLICATION TO FOCUS & REFINE

Identification of studies, design, data – Registry	Harmonisation of exposures and	Framework for taking the analysis to the data
data – Registry	outcomes	to the data

	A catalogue of studies relating to diabetes and obesity
	Populations recruited to the study
U	Biological samples stored or analysed
	The study design that was employed

InterConnect: Live study registry

HOME DATA DISCOVERY ANALYSIS VISION TO REALITY DELIVERY CONNECT WITH US MEMBERS AREA

InterConnect : global data for diabetes and obesity research

InterConnect seeks to optimise the use of existing data to enable new research into the causes of diabetes and obesity.

The variation in the risk of diabetes and obesity between different countries and continents around the world is considerably greater than the variation in risk within individual countries. This population level heterogeneity in diet, physical activity and disease outcomes is largely unexplained because physically bringing data together from cohort studies across the world is constrained by governance, ethical and legal challenges.

To address this, InterConnect is taking a new approach to enabling cross-cohort analyses. Rather than physically bringing the data together for analysis, it is 'taking the analysis to the data'.

www.interconnect-diabetes.eu

 Identification of studies, design, data – Registry
 Harmonisation of exposures and outcomes
 Framework for taking the analysis to the data

 Exemplar question: Study A In a typical week, how many glasses of red wine (6 ounces) do you drink per day?
 Align to give a single exposure where possible

[____] Number of drinks per day

Exemplar question: Study B

In general, how many glasses of red wine do you drink per day over a week and weekend? Week: [___] Number/day Weekend: [__] Number/day

Exemplar question: Study C

In a typical week, how many glasses of red wine do you drink per day? 1-3 4-6 7-9 10 or more InterConnect software captures how the alignment is made so that it is both explicit and re-usable

Identification of	Harmonisation of	Framework for
data – Registry	outcomes	to the data

- Take the analysis to the data federated analysis
- Data stay within the governance structure of the cohort
- Analytical instructions and non-identifying summary parameters allowed to pass between computers
- Any user with appropriate log in credentials can remotely access the analysis server to run analysis code

InterConnect: A bridging function

TOOLS & INFRASTRUCTURE

PA in pregnancy and neonatal anthropometric outcomes
 Fish intake and risk of type 2 diabetes

Programme

14:30	The InterConnect Project	
14:45	 Applying the InterConnect approach for federated meta-analysis 1. Physical activity in pregnancy & neonatal anthropometric outcomes Why this question is important Why federated meta-analysis is required Harmonisation & set up for federated meta-analysis Analysis plan and results 2. Fish intake and risk of type 2 diabetes 	Gernot Desoye Silvia Pastorino Tom Bishop Ken Ong
16.00	Future perspectives	
16:30	Discussion and involvement	

Global data for diabetes and obesity research

Effect of Physical Activity on Neonatal Anthropometric Outcomes: Why this question is important

Gernot Desoye Dept Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria

This project is funded by the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement no 602068.

More than 20% of European children are Overweight/obese at age 10

Ahrens W et al (IDEFICS consortium), Int J Obes 38:S99-107, 2014

Total adipocyte cell number is established early in life and is greater in the obese

Spalding KL et al, Nature 453: 783-787, 2008

Higher risk of LGA vs AGA offspring for developing Metabolic Syndrome at 11 years of age (n=175)

Variable	Hazard Ratio	P Value	95% CI for Hazard Ratio
LGA vs AGA	2.19	.006	1.25-3.82

Metabolic Syndrome is defined as presence of ≥2 of 4 major components (obesity, hypertension, high TG or low HDL levels, glucose intolerance) ; Cox regression analysis

Boney CM et al, Pediatrics 115:e290-e296, 2005

Offspring born macrosomic have a higher risk for overweight/obesity at 7 years of age

BMI	Macrosomia ≥4,000g	Control	OR (95% CI)	Ρ
Normal	63%	72 %	-	-
Overweight	22 %	17 %	1.52 (1.24-1.86)	0.001
Obesity	14 %	11 %	1.50 (1.19-1.92)	< 0.001

Gu S et al, J Biomed Res 26:235-240, 2012

Diabetes/glycosuria are risk factors for macrosomia (ALSPAC)

Maternal risk factor	Odds ratio for macrosomia (95% CI)
Existing diabetes	3.56 (1.53-8.28)
GDM	5.50 (1.18-10.30)
Glycosuria	1.58 (1.18-2.12)

Lawlor DA et al, Diabetologia 53:89-97, 2010

Vicious cycle of diabesity

Vicious cycle of diabesity

PA at 15 wks improves insulin response (oGTT) at 32 wks in Overweight/obese women

Van Poppel M et al, JCEM 98:2929-35, 2013

PA in pregnancy has long term beneficial effects on offspring

Clapp JF 3rd, J Pediatr 129:856-63, 1996

PA effect on birth weight depends on intensity and period in pregnancy

moderate to high volume exercise

- - - - low volume exercise

Hopkins & Cutfield, Exercise & Sport Sciences Reviews 39:120-127, 2011

PA effect on birth weight depends on intensity and period in pregnancy

– – – low volume exercise

Sciences Reviews 39:120-127, 2011

Summary

- Neonates born heavy (LGA/macrosomia) have a higher risk for being overweight/obese and to show early features of the metabolic syndrome in childhood
- Diabetes in pregnancy is a risk factor for heavy neonates
- Physical activity in pregnancy may improve maternal glucose tolerance
- Its effects on birth weight depend on exercise intensity/volume and the period in pregnancy, when mothers are physically active
- These results have so far been obtained in small 'cohorts' only

Global data for diabetes and obesity research

Systematic reviews of maternal physical activity in pregnancy and offspring birth size

Silvia Pastorino MRC Epidemiology Unit

This project is funded by the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement no 602068.

What is known?

- Various studies investigated PA in pregnancy and offspring birth size, with conflicting and inconclusive results
- Systematic reviews:
 - Randomized controlled trials (RCTs):
 - Wiebe et al, 2015
 - Sanabria-Martínez et al, 2015
 - Lisa Kafer (unpublished)
 - Observational studies
 - Schlussel, 2008
 - Bisson, 2016
Systematic reviews of RCTs

- *Two recent meta-analyses of maternal PA interventions suggest modest decreases in birth weight and risk of LGA
- **However a recent systematic review of interventions among overweight and obese women found no effect
- High heterogeneity in effect sizes
- Effects of Volume / Intensity of PA not investigated

*Wiebe et al, 2015; Sanabria-Martínez et al, 2015 ** Lisa Kafer (unpublished)

Effect of interventions among overweight and obese women on BW (g) and LGA

Lisa Kafer (unpublished)

Difference in Birth weight by Intervention

Systematic reviews of Observational Studies (1) Schlussel et al, 2008

	Birth weight (BW)	Large for gestational age (LGA)
Negative association	3	1
No association	5	
Positive association	2	
Negative at high levels, Positive at moderate levels	1	

• Studies lacked standardization as to the type of activities evaluated; not possible to pool results by meta-analysis

Systematic reviews of Observational Studies (2) Bisson et al, 2016

	Birth weight (BW)	LGA or Macrosomia	% Body Fat
Negative association	8	8	2
No association	25	5	
Positive association	4		

- Most studies found no association with BW
- LTPA associated with lower OR of LGA or Macrosomia, and lower % Body Fat
- Notably, 19 of 42 studies did not adjust for any confounder

Association between pregnancy PA and offspring BW – <u>High PA levels</u>

	Mean		High level	Low lev	el	Mean Difference	Mean Difference [g]
Study or Subgroup	Difference [g]	SE	Total	Total	Weight	Random, 95% CI	Random, 95% Cl
2.1 High volume vs low volum	ne - crude						
Bell 1995	-315	141	58	41	2.2%	-315.00 [-591.35, -38.65]	
Clapp 1984	-509	108.8	29	152	3.3%	-509.00 [-722.35, -295.65]	
Clapp and Capeless 1990	-310	59.5	77	55	7.0%	-310.00 [-426.62, -193.38]	
Duncombe 2006	-158.6	165.1	27	17	1.7%	-158.60 [-482.38, 165.18]	
Perkins 2007	-608	174.4	12	13	1.5%	-608.00 [-949.82, -266.18]	
Rice 1991	45.4	163.5	12	11	1.7%	45.40 [-275.05, 365.85]	
Subtotal (95% CI)			215	289	17.4%	-319.33 [-472.21, -166.45]	•
Heterogeneity: Tau ² = 19373.3	6; Chi ² = 11.71, df = 5	(P = 0.0))4); l ² = 57%				
Test for overall effect: Z = 4.09	(P < 0.0001)						
2.2 High volume vs low volum	ne - adjusted						
Harrod 2014 *	-97	52.9	206	206	7.7%	-97.00 [-200.68, 6.68]	
Hatch 1993	276	113	15	185	3.1%	276.00 [54.52, 497.48]	
Magann 2001	-86.5	43.7	238	217	8.9%	-86.50 [-172.15, -0.85]	
Subtotal (95% CI)			459	608	19.7%	-5.00 [-161.86, 151.86]	+
Heterogeneity: Tau ² = 14416.1	8; Chi ² = 9.70, df = 2	P = 0.00	08); l² = 79%				
Test for overall effect: Z = 0.06	(P = 0.95)						
2.3 High duration vs low duration	tion						
Hegaard 2010	-9	27.0	289	3672	11.1%	-9.00 [-62.00, 44.00]	+
Juhl 2010	-11	9.4	2236	49929	12.8%	-11.00 [-29.42, 7.42]	•
Nieuwenjuijsen 2002 b	16.7	14.4	1131	6744	12.5%	16.70 [-11.52, 44.92]	+
Sternfeld 1995	20	92.6	25	122	4.2%	20.00 [-161.49, 201.49]	
Subtotal (95% CI)			3681	60467	40.5%	-3.06 [-17.82, 11.70]	1
Heterogeneity: Tau ² = 0.00; Ch	ni² = 2.71, df = 3 (P = 0).44); l² =	= 0%				
Test for overall effect: Z = 0.41	(P = 0.68)						
2.4 High intensity vs low-mod	lerate intensity						
Jukic 2012	-57	34.1	224	367	10.1%	-57.00 [-124.00, 10.00]	-
Rose 1991 °	-13	16.3	1281	17927	12.3%	-13.00 [-44.95, 18.95]	4
Subtotal (95% CI)			1505	18294	22.4%	-24.74 [-62.88, 13.40]	•
Heterogeneity: Tau ² = 250.87; Test for overall effect: Z = 1.27	Chi ² = 1.35, df = 1 (P (P = 0.20)	= 0.25);	l² = 26%				
Total (95% CI)			5860	79658	100.0%	-69.85 [-114.75, -24.96]	•
Heterogeneity: Tau ² = 4006.44	; Chi ² = 80.59, df = 14	(P < 0.0	00001); l ² = 83	1%			
Test for overall effect: Z = 3.05	(P = 0.002)						-1000 -500 0 500 10
Test for subgroup differences:	$Chi^2 = 17.10$ df = 3 (F	P = 0.000	$ 7\rangle ^2 = 82.5\%$				FA decreases BW FA Increases BW

Association between pregnancy PA and offspring BW – <u>Moderate PA levels</u>

Study or Subaroup	Mean Difference (g)	SE	Moderate level Total	Low leve Total	el Weight	Mean Difference Random, 95% Cl	Mean Difference [g] Random, 95% Cl
3.1 Moderate volume vs	low volume - crude					runneenigee veer	
Botkin 1991	140.5	101.3	19	25	3.6%	140.50 [-58.04, 339.04]	
Clapp 1984	59	101.5	47	152	3.6%	59.00 [-140.04, 258.04]	
Downs 2007	424.4	49.6	41	18	7.6%	424.40 [327.19, 521.61]	
Duncombe 2006	45.6	153.4	24	17	1.9%	45.60 [-255.24, 346.44]	
lorns 1996	29	92	48	53	4.1%	29.00 [-151.32, 209.32]	
ahromi 2011	320	66.1	70	62	6.0%	320.00 [190.45, 449.55]	
ohnson 1994	109.2	64.9	139	95	6.1%	109.20 [-18.16, 236.56]	
felzer 2010	-70	117.6	27	17	2.9%	-70.00 [-300.55, 160.55]	
lorgan 2014	100	54.8	126	144	7.1%	100.00 [-7.46, 207.46]	
ortela 2014 "	-100	67.3	37	19	5.9%	-100.00 [-232.03, 32.03]	
ubtotal (95% CI)			578	602	48.7%	115.30 [-6.48, 237.08]	•
.2 Moderate volume vs Juhl 2010	low volume - adjuste 0	d 7.1	4447	49929	11.7%	0.00 [-14.00, 14.00]	
uhl 2010	0	7.1	4447	49929	11.7%	0.00 [-14.00, 14.00]	Ť
ubtotal (95% CI)	6	57.0	95	50051	18 5%	0.00 [-107.00, 119.00]	
leterogeneity: Tau ² = 0.0 est for overall effect: Z =	00; Chi² = 0.01, df = 1 (= 0.01 (P = 0.99)	P = 0.92)	; l² = 0%				
.3 Moderate intensity v	s low intensity						
legaard 2010 b	-1	13.2	2384	1998	11.4%	-1.00 [-27.00, 25.00]	+
ukic 2012	-62	28.5	527	367	10.0%	-62.00 [-118.00, -6.00]	
lose 1991	7	12.7	17927	2134	11.4%	7.00 [-18.00, 32.00]	t
ubtotal (95% CI)			20838	4499	32.8%	-9.13 [-38.50, 20.24]	•
eterogeneity: Tau ² = 38	3.21; Chi ² = 4.90, df = 3	2 (P = 0.0	9); l ² = 59%				
est for overall effect: Z =	= 0.61 (P = 0.54)						
otal (95% CI)			25958	55152	100.0%	61.45 [16.40, 106.51]	•
leterogeneity: Tau ² = 44	61.44; Chi ² = 110.80, d	f = 14 (P	< 0.00001); l ² = 87	%			
est for overall effect: Z =	2.67 (P = 0.008)					DA	-500 -250 0 250 500
est for subgroup differer	nces: Chi ² = 3.81, df = 3	2(P = 0.1)	5), l ² = 47.5%			F#	Georgases DW FA Incleases DW

Limitations of existing systematic reviews

- High heterogeneity due to:
 - Different consideration of confounding between studies; many studies were unadjusted
 - Different PA exposures:
 - Different domains: total PA, LTPA, occupational PA
 - Different volume or intensity
 - Categorisation not standardised
 - Different timings of PA during pregnancy
- Publication bias not tested

Alternative approaches

Result sharing

- Burden on collaborators of preparing and analysing data
- More difficult to standardize measures across studies

Data pooling

- Collaborators fear loss of ownership of their data
- Complex data-sharing agreements
- Federated meta-analyses
 - Data stay within the governance structure of the cohorts
 - Analytical instructions and non-identifying summary parameters allowed to pass between computers

Why using a federated meta-analysis

- Allows an Individual participant meta-analysis without physical pooling of data
- Reduces heterogeneity by:
 - Harmonising physical activity measures
 - Including the same number and types of confounders
- Allows investigation of:
 - Modifying factors
 - Different PA domains
 - Shape of the association and thresholds
 - Timing of PA in pregnancy (1st or 3rd trimester)
- Eliminate publication bias

Studies participating in the InterConnect physical activity in pregnancy project

Global data for diabetes and obesity research

Technical set up & Harmonisation for federated meta-analysis

Tom Bishop, Technical Lead, MRC Epidemiology Unit, University of Cambridge, UK

This project is funded by the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement no 602068.

Seven participating studies have set up a server & harmonised data ready for analysis

Harmonisation example: Duration of moderatevigorous leisure time physical activity

ALSPAC:

Question in questionnaire	 Q1. HOW MUCH do you do the following at present? Jogging • Aerobic Antenatal exercises Keep fit exercises • Yoga Squash • Tennis/badminton Swimming • Brisk walking Weight training Cycling • Other exercises 					
Frequency/duration	>7h/w, 2-6h/w, <1h/w, Never h/w = hours/week					
Harmonised variable	Duration of moderate/vigorous LTPA (h/w)					
Harmonisation rule	 Convert: >7h/w to 7h/w 2-6h/w to 4h/w <1h/w to 0.5h/w Never to 0h/w Sum up hours/w for all activities over 3 MET* (i.e. exclude antenatal exercises) 					

Harmonisation example: Duration of moderatevigorous leisure time physical activity

ABCD: *MET = Metabolic Equivalent of Task Question in In your spare time did you: questionnaire **1.** Did you take **walks** for fun in the past week? 2. Did you ride a bicycle in the past week? **3.** Did you **play sport**s in the past week? (for example: tennis, handball, gymnastics, fitness, skating, and swimming) For each guestion: At what PACE do you usually do this? relaxed pace average pace brisk pace For each question: FOR HOW LONG do you usually do this? **Frequency/duration** Continuous value (mins/week) Harmonised variable Duration of moderate/vigorous exercise (h/w) Harmonisation rule Using Q1-3, sum up mins/w for all activities over 3 MET* (i.e. exclude relaxed 1. walking) Convert to hours (divide by 60) 2. Missing data rule Count single missing activity durations as 0 duration. If pace is missing, assume relaxed. If all activity durations missing, then mark participant as missing.

The task and challenges of harmonisation are not unique to InterConnect

- Harmonisation was completed on all studies for all variables required for analysis
- Data pooling and results sharing for multiple studies also require this type of work
- InterConnect allows decisions & rules to be recorded for transparency & reuse

The InterConnect team supported the server set up & data upload for each study

Harmonisation rules were implemented in code on each study's server

Validity of summary statistics for harmonised variables was checked

	ABCD	ALSPAC	HSS	REPRO	ROLO	SWS
Mean Birth weight (g)	3,503	3,488	3,288	3,403	4,048	3,519
Median LTPA (h/wk)	2.0	4.0	3.0	4.0	1.7	6.8

- ROLO higher birth weight as study focused on second born
- SWS higher activity due to physical activity question including additional activities compared to other studies
- Check all studies and variables before analysis starts

Seven participating studies have set up a server & harmonised data ready for analysis

Global data for diabetes and obesity research

Physical activity during pregnancy exemplar project - RESULTS

Ken Ong Programme Leader MRC Epidemiology Unit, University of Cambridge, UK

This project is funded by the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement no 602068.

Eight participating studies (all observational)

Analysis plan

- Population:
 - **Include:** Live births, singleton, full term babies
 - Exclude: Preterm (< 37 weeks gestation), multiple births
- **Exposure:** Physical activity in pregnancy: objective or subjective measurement of:
 - Volume (Duration or Energy Expenditure)
 - Intensity (Low vs. Mod/Vigorous)
 - Gestational age at PA measurement (by trimester)
- Outcomes:
 - Birth weight: Continuous or Macrosomia (Birth weight >4000 g; or LGA, large for gestational age)
 - %body fat in newborns (by DXA, skinfold thickness, or PeaPod air displacement plethysmography)
 - Ponderal index (BW/Length^3)

DAG for the Gestational Physical Activity – Fetal Adiposity (BW) Exemplar

DAG for the Gestational Physical Activity – Fetal Adiposity (BW) Exemplar

	ABCD	ALSPAC	HSS	REPRO	ROLO	SWS
	Netherlands	UK	US	Poland	Ireland	UK
Ν	6464	9058	1054	991	617	1902

	ABCD	ALSPAC	HSS	REPRO	ROLO	SWS
	Netherlands	UK	US	Poland	Ireland	UK
Ν	6464	9058	1054	991	617	1902
Non-White	31%	2%	23%	0%	2%	3%
Obese	8%	6%	21%	4%	18%	17%
GDM	1%	0.5%	4%	4%	2%	1%
LGA	19%	21%	37%	19%	62%	19%

	ABCD	ALSPAC	HSS	REPRO	ROLO	SWS
	Netherlands	UK	US	Poland	Ireland	UK
Ν	6464	9058	1054	991	617	1902
Non-White	31%	2%	23%	0%	2%	3%
Obese	8%	6%	21%	4%	18%	17%
GDM	1%	0.5%	4%	4%	2%	1%
LGA	19%	21%	37%	19%	62%	19%
<u>1st Trimester P</u>	<u>A</u>					
LTPA_Dur (h/wk)	2.0	4.0	3.0	4.0	1.7	6.8

	ABCD	ALSPAC	HSS	REPRO	ROLO	SWS
	Netherlands	UK	US	Poland	Ireland	UK
Ν	6464	9058	1054	991	617	1902
Non-White	31%	2%	23%	0%	2%	3%
Obese	8%	6%	21%	4%	18%	17%
GDM	1%	0.5%	4%	4%	2%	1%
LGA	19%	21%	37%	19%	62%	19%
<u>1st Trimester P</u>	<u>A</u>					
LTPA_Dur (h/wk)	2.0	4.0	3.0	4.0	1.7	6.8
LTPA_EE (Met.h/wk)	8.1	15.2	10.2	16.5	4.5	18.0
MVPA (h/wk)	1.5	4.0	1.5	4.0	0.3	1.3

RESULTS – Determinants of Birth weight (g)

	ABCD	ALSPAC	HSS	REPRO	ROLO	SWS
	Netherlands	UK	US	Poland	Ireland	UK
Ν	6464	9058	1054	991	617	1902
Difference in BW						
Sex (M vs F)	138.0	139.2	164.9	173.4	167.4	158.5
Gestational age (per week)	150.5	124.2	165.4	128.0	143.7	146.1

All p<0.001

LEISURE TIME PA DURATION (h/wk) \rightarrow BIRTHWEIGHT (g)

BIRTH_WEIGHT ~ LTPA_DUR + GESTATIONAL_AGE + SEX + PARITY + MATERNAL_AGE + SMOKING + ALCOHOL + MATERNAL_EDU + ETHNICITY

LEISURE TIME PA DURATION (h/wk) \rightarrow LARGE FOR GESTATIONAL AGE (LGA)

BIRTH_WEIGHT_LGA ~ LTPA_DUR + GESTATIONAL_AGE + SEX + PARITY + MATERNAL_AGE + SMOKING + ALCOHOL + MATERNAL_EDU + ETHNICITY

LEISURE TIME PA ENERGY EXPENDITURE (MET-h/wk) \rightarrow BIRTHWEIGHT (g)

BIRTH_WEIGHT ~ LTPA_EE + GESTATIONAL_AGE + SEX + PARITY + MATERNAL_AGE + SMOKING + ALCOHOL + MATERNAL_EDU + ETHNICITY

LEISURE TIME PA ENERGY EXPENDITURE (MET-h/wk) \rightarrow LGA

BIRTH_WEIGHT_LGA ~ LTPA_EE + GESTATIONAL_AGE + SEX + PARITY + MATERNAL_AGE + SMOKING + ALCOHOL + MATERNAL_EDU + ETHNICITY

Explore the effect of adjustment for confounding

• Tested models **WITH** and **WITHOUT** adjustment for potential confounders (Maternal Education, Age, Parity, Smoking, Alcohol, Ethnicity)

Main effects – WITHOUT adjustment for confounders

LEISURE TIME PA DURATION (h/wk) \rightarrow BIRTHWEIGHT (g)

BIRTH_WEIGHT ~ LTPA_DUR + GESTATIONAL_AGE + SEX

Main effects – WITHOUT adjustment for confounders

LEISURE TIME PA ENERGY EXPENDITURE (MET-h/wk) \rightarrow LGA

BIRTH_WEIGHT_LGA ~ LTPA_EE + GESTATIONAL_AGE + SEX

ABCD Study

LTPA Duration (h/wk) \rightarrow Birthweight (g)

Model Covariates	Estimate	Std. Error	P-value
GESTATIONAL_AGE+SEX	7.16	1.75	4.4 E-05
GESTATIONAL_AGE+SEX+PARITY	9.02	1.74	2.0 E-07
GESTATIONAL_AGE+SEX+PARITY+MATERNAL_AGE	7.54	1.77	2.1 E-05
GESTATIONAL_AGE+SEX+PARITY+MATERNAL_AGE +SMOKING	6.97	1.76	7.7 E-05
GESTATIONAL_AGE+SEX+PARITY+MATERNAL_AGE +SMOKING+ALCOHOL	6.97	1.76	7.7 E-05
GESTATIONAL_AGE+SEX+PARITY+MATERNAL_AGE +SMOKING+ALCOHOL+ MATERNAL_EDUCATION	5.38	1.79	2.6 E-03
GESTATIONAL_AGE+SEX+PARITY+MATERNAL_AGE +SMOKING+ALCOHOL+ MATERNAL_EDUCATION + ETHNICITY	2.94	1.80	1.0 E-01

ABCD Study

Physical activity and BW vary markedly by Ethnicity

Explore the effect of adjustment for confounding

- Tested models **BEFORE** and **AFTER** adjustment for potential confounders (Maternal SES, Age, Parity, Smoking, Alcohol, Ethnicity)
- Adjustment for confounding reduced heterogeneity and reduced positive confounding due to Education and Ethnicity

Interactions with **Offspring Sex (male/female)**

Association tested	Interaction Estimate	95% CI	P-value	l-square
LTPA Duration (h/wk) \rightarrow BW (g)	-0.5	-3.1 to 2.1	0.7	0%
LTPA EE (MetH/wk) \rightarrow BW (g)	-0.2	-0.8 to 0.4	0.6	0%
MVPA (h/wk) \rightarrow BW (g)	-0.6	-3.9 to 2.7	0.7	0%
LTPA Duration (h/wk) \rightarrow LGA	1.00	0.97 to 1.02	0.8	34%
LTPA EE (MetH/wk) → LGA	1.00	0.99 to 1.00	0.2	0%
MVPA (h/wk) → LGA	0.99	0.97 to 1.02	0.6	28%

Interactions with Ethnicity (White/Black)

Association tested	Interaction Estimate	95% CI	P-value	I-square
LTPA Duration (h/wk) \rightarrow BW (g)	0.5	-10.2 to 11.2	0.9	0%
LTPA EE (MetH/wk) $ ightarrow$ BW (g)	0.5	-1.9 to 2.9	0.7	0%
MVPA (h/wk) → BW (g)	-2.7	-15.6 to 10.2	0.7	0%
LTPA Duration (h/wk) \rightarrow LGA	0.98	0.89 to 1.07	0.6	26%
LTPA EE (MetH/wk) $ ightarrow$ LGA	1.00	0.98 to 1.02	0.9	26%
MVPA (h/wk) → LGA	0.99	0.87 to 1.11	0.8	38%

Interactions with Maternal Obesity (no/yes)

Association tested	Interaction Estimate	95% CI	P-value	l-square
LTPA Duration (h/wk) \rightarrow BW (g)	1.3	-2.6 to 5.3	0.5	0%
LTPA EE (MetH/wk) $ ightarrow$ BW (g)	0.2	-0.9 to 1.2	0.8	0%
MVPA (h/wk) → BW (g)	-0.8	-6.5 to 5.0	0.8	0%
LTPA Duration (h/wk) \rightarrow LGA	0.99	0.97 to 1.02	0.5	0%
LTPA EE (MetH/wk) → LGA	1.00	0.99 to 1.00	0.3	0%
MVPA (h/wk) → LGA	0.99	0.96 to 1.03	0.7	0%

Interactions with GDM (no/yes)

Association tested	Interaction Estimate	95% CI	P-value	l-square
LTPA Duration (h/wk) \rightarrow BW (g)	5.3	-13.8 to 24.3	0.6	46%
LTPA EE (MetH/wk) \rightarrow BW (g)	2.4	-2.3 to 7.0	0.3	55%
MVPA (h/wk) → BW (g)	10.0	-17.9 to 37.9	0.5	56%
LTPA Duration (h/wk) \rightarrow LGA	1.00	0.93 to 1.08	1.0	0%
LTPA EE (MetH/wk) → LGA	1.01	0.99 to 1.03	0.6	0%
MVPA (h/wk) → LGA	1.01	0.90 to 1.14	0.8	17%

Main effects - adjusted for confounders

LEISURE TIME PA Duration (h/wk) → <u>NEWBORN BODY FAT %</u>

NEO_PER_BFAT ~ LTPA_DUR + GESTATIONAL_AGE + SEX + PARITY + MATERNAL_AGE + SMOKING + ALCOHOL + MATERNAL_EDU + ETHNICITY

Beta [95% CI]

Summary

- Consistently Null association with 1st trimester PA
- No heterogeneity detectable by strata

Next Steps

- Update the current analyses
 - Ponderal index
 - Add data from DNBC (n=79K)
- Test the shape of association / possible threshold effects
 - Is a challenge to harmonise absolute values of PA
- Test associations with 3rd trimester Physical Activity
 Five of eight studies

Programme

14:30	The InterConnect Project	
14:45	Applying the InterConnect approach for federated meta-analysis	
	outcomes	
	 2. Fish intake and risk of type 2 diabetes Why this question is important Why federated meta-analysis is required Progress with set up and harmonisation 	Nita Forouhi & Silvia Pastorino
16.00	Future perspectives	
16:30	Discussion and involvement	

Global data for diabetes and obesity research

Exemplar: Fish intake and new-onset type 2 diabetes

Silvia Pastorino, Nita Forouhi MRC Epidemiology Unit 12th September 2016, Munich

This project is funded by the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement no 602068.

What is known

 It is proposed that fish intake is likely to be beneficial for the prevention of type 2 diabetes, based on the benefits for cardiovascular health

Meta analyses of fish and type 2 diabetes

Meta analyses	Wallin,	Wu,	Xun,	Zhou,	Zheng,
	Diabetes Care,	Br J Nutr,	Diabetes Care,	Br J Nutr,	PLOS ONE,
	2012,	2012	2012	2012	2012
	13 studies	13 studies	12 studies	9 studies	11 studies
	21,173 T2D	20,830 T2D	18,711 T2D	18,272 T2D	18,047 T2D
Overall	1.01	1.12	1.00	1.15	1.07
Relative risk	0.99, 1.03	0.94, 1.34	0.85, 1.18	0.98, 1.35	0.91, 1.25
(95% CI)	Per serving/week	Per 100g/day	Highest/lowest	Highest/lowest	Highest/lowest

Fish and T2D: Location matters

Per serving/week

Wallin A Diabetes Care, 2012, 35:

Per 100 g/d

Wu HY BJN 2012, 107:

What are the research gaps?

Research question

- Systematic reviews analysed total fish and did not distinguish between types of fish (e.g. fatty fish, lean fish and shellfish) or cooking methods; contaminants/pollutants might also contribute
- Systematic reviews did not include unpublished results
- High heterogeneity in meta-analyses might be caused by:
 - Different confounding structures of included studies
 - Different fish exposures (portions sizes varied across studies)

Advantages of InterConnect

Research question

- Individual participant meta-analysis without physical pooling of data
- Include studies that have not yet published on the association between fish and T2D
- Can perform sub-group analyses and analyses of different fish types
- Reduce heterogeneity by:
 - Including the same types of confounders
 - Harmonising exposures and outcome to a common format

Map of participating studies

Participating studies: Europe

Study name	Country	N, sex	Self-reported method	N of fish variables
EPIC-InterAct	8 European countries	28,460 m/w	FFQ	12
EPIC Norfolk	UK	25,639 m/w	FFQ, 7-d diet diary	6
Finnish Mobile Clinic Health Examination (FMC)	Finland	4,304 m/w	Dietary history	29
Hoorn Study	Netherlands	6000 m/w	FFQ	2
Norwegian Women and Cancer Study (NOWAC)	Norway	33,740 w	FFQ	22
Swedish Mammography Cohort (SMC) & Cohort of Swedish Men (SMC, COSM)	Sweden	66,651 w & 45,906 m	FFQ	13
SUN Project	Spain	22,340 m/w	FFQ	7
Whitehall II	UK	10,308 m/w	FFQ	5
Zutphen Elderly	Netherlands	876 m/w	Cross-check dietary history	~30

Participating studies: Asia and Australia

Study name	Country	N, sex	Self-reported method	N of fish variables
The Australian Diabetes Obesity and Lifestyle Study (AusDiab)	Australia	6537 m/w	FFQ	3
Japan Public Health Center-based Prospective study (JPHC)	Japan	52,680 m/w	FFQ	19
Nutrition and Health of Aging Population in China	China	4,526 m/w	open-ended FFQ	7
China Kadoorie Biobank	China	>500,000 m/w	FFQ	1

Overview of work-flow

Target exposure harmonisation variables

- Total fish
- Fatty/oily fish (EPIC classification: fat content > 4%)
- Lean fish
- Shellfish (crustaceans and molluscs)
- Saltwater fish
- Freshwater fish
- Fried fish
- Smoked or salted fish
- Units:
 - g/day
 - Servings /day

Fish exposure harmonisation potential

			Targe	et variabl	es		
Participating cohorts	Total fish	Fatty fish	Lean fish	Shellfish	Freshwater and Saltwater fish	Fried fish	Smoked/ salted fish
AusDiab	Y					Y	
EPIC Norfolk	Y	Y	Y	Y	Y	Y	
FMC	Y	Y	Y	Y	Y		Y
Hoorn	Y	Y					
EPIC-InterAct	Y	Y	Y	Y		Y	
ЈРНС	Y	Y	Y	Y	Y		Y
NOWAC	Y	Y	Y	Y	Y		
Nutrition and Health of Aging Population in China	Y			Y	Y		Y
SMC and COSM	Y	Y	Y	Y		Y	Y
SUN	Y	Y	Y	Y			Y
Whitehall II	Y	Y	Y	Y		Y	
Zutphen Elderly	Y	Y	Y	Y	Y	Y	?
China Kadoorie Biobank	у						

Analysis plan

- **Population:** Include general population, no limits on age, exclude prevalent cases of type 2 diabetes
- **Exposure:** Fish consumption: at least one measure of frequency (servings/day or servings/week) or quantity (g/day or per serving) of intake of total and/or type of fish/seafood consumed
- **Outcome:** Type 2 diabetes incidence: biochemically diagnosed or self-reported (ideally has information on diagnosis date, and ideally validated against an additional source)

Potential Confounders:

- **Demographic:** age, sex, socio-economic status (education and/or occupation, income if available);
- Lifestyle: smoking, physical activity, alcohol;
- Health: BMI (waist circumference or waist-hip ratio if available); family history of diabetes, comorbidity (MI, stroke, cancer, hypertension)*;
- Dietary: total energy intake, other dietary variables (other key food groups eg red/processed meat, fruits/vegetables, dairy, sugary beverages, fibre), cooking method (information on frying, grilling, eaten raw, etc), cooking oil or other fat used in cooking, supplements (particularly fish-oil supplement).
- **Modifiers:** Geographic location (continent, region), environmental contaminants (if available) such as PCBs, methyl mercury, dioxins and others relevant compounds.
- * Or exclude people with prevalent conditions

IT set up progressing

Status	Study
Completed	JPHC, NOWAC, Whitehall II
Close to completion	Hoorn, Nutrition & Health of Aging Population in China
In progress	AusDiab, EPIC-Norfolk, EPIC-InterAct, FMC, SUN, Zutphen Elderly
In discussion	SMC, COSM, China Kadoorie Biobank

Next steps

Breakdown of participating studies by previous publication on fish and T2D

Programme

14:30	The InterConnect Project	
14:45	Applying the InterConnect approach for federated meta-analysis	
	 Physical activity in pregnancy & neonatal anthropometric outcomes Fish intake and risk of type 2 diabetes 	
16.00	Future perspectives	
	 Ideas for future research projects Vision and place for federated meta-analysis 	Matthias Schulze & Nita Forouhi Nick Wareham
16:30	Discussion and involvement	

Global data for diabetes and obesity research

Ideas for future research projects

Matthias Schulze German Institute of Human Nutrition, Potsdam

Nita Forouhi MRC Epidemiology Unit, Cambridge

This project is funded by the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement no 602068.

Developing through exemplar research projects

TOOLS & INFRASTRUCTURE

1. PA in pregnancy and neonatal anthropometric outcomes

2. Fish intake and risk of type 2 diabetes

3. Ideas for future research projects – InterConnect led

Potential of InterConnect for studies on diet and diabetes risk

General framework

- Project ideas prioritized by InterConnect consortium members:
 - Exploratory dietary patterns
 - 2. Gene-diet Interaction: TCF7L2
 - 3. Legume consumption

Project 1: Exploratory dietary patterns and diabetes

Project 1: Exploratory dietary patterns and diabetes

How do we identify food consumption patterns?

(adapted from Hoffmann & Schulze BJN 2007)
Exploratory dietary patterns and diabetes

Previous cohort studies on PCA/EFA and diabetes

From studies to evidence-based guidelines

Project 1: Exploratory dietary patterns and diabetes

• Aim of project: cross-validation of previously described exploratory patterns across different populations

strengthen evidence-base for overall dietary patterns in diabetes prevention

Project 2: Gen-diet interactions – TCF7L2

Project 2: Gen-diet interactions – TCF7L2

 The strongest, common type 2 diabetes risk variant is located in the TCF7L2 gene

Can risk be modified by lifestyle?

Interaction of coffee intake and *TCF7L2* on risk of T2D

- ~12,000 incident diabetes cases, ~16.800 random subcohort
- Baseline questionnaires
- Candidate and genome-wide genotyping
- Biomarkers

Heterogeneity: I-squared=35.8%, tau-squared=0.0008, p=0.155

TcF7L2 - Previous interaction studies on T2D

lifestyle factor	interaction	no interaction
whole grain, cereal fibre, dietary fibre	Fisher (2009) <i>,</i> Hindy (2012)	Cornelis 2009, EPIC-InterAct (in press)
GL, GI	Cornelis 2009	
dietary carbohydrate		Hindy (2012)
dietary protein		Hindy (2012)
dietary fat		Hindy (2012)
BMI		Hindy (2012), Wang (2013)
physical activity		Hindy (2012), Wang (2013)
MedDiet		Corella (2013), Langenberg (2014)

- results of previous studies not always consistent
- most studies probably underpowered.

Project 2: Gene-diet Interaction - TCF7L2

Aim of project:

- De-novo meta-analysis of gene-diet interaction on risk of T2D of *TCF7L2* gene variants and the intake of
 - dietary fibre (whole grain, cereal fibre),
 - coffee
 - macronutrients on risk of T2D

Project 3: Legume intake and T2D

Project 3: Legume intake and T2D

- Why should we be interested?
- Legumes are excellent sources of protein, dietary fibre, and a variety of micronutrients and phytochemicals, & low in fat
- In line with WHO recommendation to limit the consumption of red and processed meat, legumes could provide healthy alternatives to meat products
- Amount and type of legume
 consumption varies substantially
 across the world, & people from
 many regions consume legumes as
 staple foods, but health effects are
 largely unknown

What is the research evidence?

Prospective cohort studies reporting measures of association between intake of legumes in relation to type 2 diabetes

Authors	Date	Population	N of T2D cases	Legume intake	Exposure measure	Association	P _{trend}
A. M. Hodge <i>et al.</i>	2004	MCCS (AUSTRALIA)	365	Total (g/d)	FFQ	OR= 1.09 (0.81-1.47)	0.7
S. Liu <i>et al.</i>	2004	WHS (USA)	1,608	Total (sv/d)	FFQ	RR= 1.12 (0.95-1.33)	0.2
L. A. Bazzano <i>et al.</i>	2008	NHS (USA)	4,529	Total (sv/d)	FFQ	HR = 1.14 (1.03-1.25)	0.09
R.Villegas <i>et al.</i>	2008	SWHS (ASIA)	1,605	Total (g/d)	FFQ	RR= 0.62 (0.51-0.74)	<0.001
M. Aldwairji <i>et</i> <i>al.</i>	2013	UK WCS (EUROPE)	114	Total (g/d)	FFQ	OR = 1.33 (0.80-2.22)	0.25
				Dried (g/d)	FFQ	OR = 0.85 (0.52-0.84)	0.03
				Fresh (g/d)	FFQ	OR = 1.51 (0.89-2.59)	0.27

Conflicting for total legumes, and unavailable for types of legumes

Pulses

💮 FAOSTAT

Soyabeans

Legume intake and T2D – Why InterConnect is the right approach to investigate

- Public health importance of the research question
- Limited available evidence
- We know that some cohorts worldwide have data on legumes but have not investigated their association with T2D
- Federated analysis approach of InterConnect offers the opportunity to
 - standardise the definitions of types of legumes,
 - consider the geographical variation in legume intake,
 - account for confounding factors using individual participant level data,
 - without data leaving research institutions

Setup of 3 new InterConnect projects

• General criteria for participating studies:

- Population: Include general population; no limits on age; exclude prevalent cases of type 2 diabetes
- Exposure:
 - food and beverage consumption (amount/period and/or frequency of intake) and derived intake of dietary fibre and macronutrients
 - TCF7L2 gene polymorphisms (for project 2 only)
- Outcome: incidence of T2D: self-reported or objectively measured (information on diagnosis date would be ideal)
- Potential Confounders: Age, sex, smoking, body mass index (BMI), physical activity, socio-economic status (education or occupation), family history of diabetes, other health exposures (cardiovascular diseases, history of previous illness)
- Modifiers: Geographic location

It's not only about diet

- A 4th proposed exemplar is on childhood growth and development
- The association between birthweight and later adiposity – to be led by Dr Ken Ong and Dr Gernot Desoye

Developing through exemplar research projects

TOOLS & INFRASTRUCTURE

RESEARCH USE: APPLICATION TO FOCUS & REFINE

- 2. Fish intake and risk of type 2 diabetes
- 3. Future research projects InterConnect led
- 4. Other ideas for future research projects welcome

Global data for diabetes and obesity research

Vision and place for InterConnect approach to federated meta-analysis

Nick Wareham 12 September 2016

This project is funded by the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement no 602068.

InterConnect approach

- PA in pregnancy exemplar project
 - Analysis equivalent to a meta-analysis of harmonised individual level participant data (IPD)
 - Delivering scientifically interesting results of public health relevance
- No physical sharing or pooling data
- Achieved via access to data and sharing of results
 - Access is 'blind' <u>individual records are neither visible nor</u> <u>physically accessible</u>

Overview of process – some new tasks

Tasks specific to InterConnect approach are highlighted in italics

Others are common research tasks

ROLES	TASKS					
Coordinator	Define question	Identify studies	Agree analysis plan	($ ightarrow$ on-going coordination)		
Studies	Provide meta- data	Set up local server	Review harmonisation algorithms	Upload data		
Harmonisation Lead	Review meta- data	Define target variables	Propose harmonisation algorithms			
Technical Lead	Network set up & security (→ on-going)	Support study server set up	Check server connectivity	Code and run harmonisation algorithms	Run analyses (R, DataSHIELD	

Place of InterConnect approach

- Some new tasks cost and time to set up
 - Cost of server dependent on local context and study size
 - Time to set up server (c. 12 16 hours), uploading dataset (c. 8 hours), plus on-going patches and software upgrades
- Use only where needed
 - Contextual variation environmental or place based differences in risk - and /or genetic differences in risk
 - Can't be addressed within a single study

Benefits once set up

- Study effort focused on IT and preparation of data
 - Re-use by giving access to additional sub-sets of data to address new questions
 - Studies remain in control of data unlike central deposition
- Unlike traditional meta-analysis
 - Studies don't need to perform any analyses – work follows role
 - Analysis is done in real time no wait for outputs from study analysts

Vision

 A global 'data access and results sharing' network for federated meta-analysis of harmonised individual level participant data

Autonomous consortia within network

- InterConnect is NOT an analytical consortium
- Seeks to enable others
 - ad hoc consortia form within a framework
 - each to decide its own way of working and be autonomous

Self determining consortia - formed

Individual studies – members of one or many consortia

Delivering the vision – through exemplars

- Broadening studies
- Broadening roles
- Enabling management processes

Broadening studies: PA (8) & fish (13) exemplars

Europe	UK	Sweden	Finland	China
EPIC-InterAct	ALSPAC	Mammography	Mobile Clinic Health	Nutrition & Health
Netherlands	SWS	Swedish Men	Norway	Kadorie Biobank
ABCD	Whitehall II Study	Poland	NOWAC	Japan
Gecko Drenthe	Spain	Repro_PL	Ireland	JPHC
Hoorn Study	Sun Project	Denmark	ROLO	Australia
Zutphen Elderly		DNBC	USA	AusDiab
			Healthy Start Study	

Broadening roles

ROLES	TASKS				
Coordinator	Define question	ldentify studies	(\rightarrow on-going coordination)		
Studies	Provide meta- data	Set up local server	Review harmonisation algorithms	Upload data	
Harmonisation Lead	Review meta- data	Define target variables	Propose harmonisation algorithms		
Technical Lead	Network set up & security (→ on-going)	Support study server set up	Check server connectivity	Code and run harmonisation algorithms	Run analyses (R, DataSHIELD

InterConnect has been leading the exemplars

Broadening roles: others can lead

ROLES	TASKS				
Coordinator	Define question	Identify studies	($ ightarrow$ on-going coordination)		
Studies	Provide meta- data	Set up local server	Review harmonisation algorithms	Upload data	
Harmonisation Lead	Review meta- data	Define target variables	Propose harmonisation algorithms		
Technical Lead	Network set up & security (→ on-going)	Support study server set up	Check server connectivity	Code and run harmonisation algorithms	Run analyses (R, DataSHIELD

Others can lead

InterConnect continues technical support

Enabling management processes

- 'Data access and results sharing' collaboration agreement
- Transparent and democratic processes through online tool – in development

Vision: step-wise

- Initially studies coalesce / disperse around exemplar questions
- Research themes and more stable groupings emerge
- Initially a facilitated network \rightarrow more autonomous consortia

Getting involved (1) Registry

Short Name	Name		Study Design	Actual number of participants recruited to the study	Country of residence			
MEC	Multiethnic Cohort Study		Prospective cohort study	215 251	United States			
SWS	Southampton Women's S	Survey	Prospective cohort study	12 583	United Kingdom			
	Healthy Start study		Prospective cohort study	2 820	United States			
ALSPAC	Avon Longitudinal Study	Our approach is to enable w	vide coverage of s	tudies with a limited set of information	on that can largely			
AHS	Agricultural Health Study	be collated from information	n already in the p	ublic domain. This creates little burde	en for each			
ARIC	Atherosclerosis Risk in C	individual study while enabl	ndividual study while enabling sign-posting of a large number of studies useful for cross-cohort					
DNBC	Danish National Birth Co	analyses. Meta-data currently included in the registry comprises:						
EPIC - Turin	European Prospective In	 Study name contact, reference namer, website 						
NHS I	Nurses Health Study I	 Study hame, contact, reference paper, website Study design, timeline, number of participants 						
NOMAS	The NOrthern MAnhatta	 Broad categories of ethnic and racial groups recruited 						
		 Health information at b Participant selection cr 	baseline and durin iteria and recruitr	g follow up, as well as key exposures nent procedures	5			
		You can view and search the	e registry here.					

Email InterConnectRegistry@mrc-epid.cam.ac.uk if you would like to include your study in the registry

Getting involved (2) New exemplars

- Exploratory dietary patterns
- Gene-diet Interaction: TCF7L2
- Legume consumption
- Birthweight and later adiposity
- Others?

Together we can create a snowball

Global data for diabetes and obesity research

Acknowledgement

• This project is funded by the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement no 602068.

Connect with us

- InterConnect@mrc-epid.cam.ac.uk
- www.interconnect-diabetes.eu